Poly(vinyl alcohol) Nanocomposite Films (II): Thermo-mechanical Properties and Morphology

폴리(비닐 알코올) 나노복합체 필름(II) : 열적-기계적 성질 및 모폴로지

  • Ham, Shin-Kyun (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Jung, Min-Hye (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 함신균 (금오공과대학교 고분자공학과) ;
  • 정민혜 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Published : 2006.11.30

Abstract

Blends of poly(acrylic acid- co-maleic acid) (PAM) with poly (vinyl alcohol) (PVA) were pre -pared in distilled water PVA/PAM/saponite (PVA/PAM/SPT) nanocomposite films were prepared with various clay contents by using the solution intercalation method. The variations of the dispersion, morphology, and thermo-mechanical properties of the nanocomposites with clay content in the range 0 to 9 wt% were examined. Up to 3 wt% clay loading, the clay particles were homogeneously dispersed in the PVA/PAM blends. However, some agglomerated structures form in the polymer matrix above a clay content of 7 wt%. The thermal stability of the hybrids was increased linearly with increasing the clay loading up to 9 wt%. The maximum strength and modulus were obtained at a clay content of 7 wt%. Thus, the addition of small amounts of clay to the PVA/PAM blends produced PVA/PAM nano-composites with improved the thermo-mechanical properties.

폴리(비닐 알코올) (PVA)과 폴리아크릴산-말레산-공중합체(PAM)의 블렌드를 수용액 상태로 얻은 후 점토인 사포나이트(SPT)를 분간시켜 필름 형태인 PVA/PAM/SPT의 나노복합재료를 합성하였다. 용액 삽입법을 이용하여 점토 함량을 0-9 wt%의 다양한 농도로 변화시켜 얻은 나노복합재료에 대해 분산도, 모폴로지 및 열적-기계적 성질 등을 각각 조사하였다. 점토 함량이 3 wt%일 때 점토 입자는 PVA/PAM 블렌드에 잘 분산되었으며, 점토함량이 7 wt%보다 많을 경우에는 고분자 모체에 일부 뭉친 구조가 관찰되었다. 나노복합재료의 열적 안정성은 점토함량이 9 wt%로 증가할 때까지 꾸준히 증가하였다. 인장 강도와 초기인장 탄성률은 점토 함량이 7 wt%일 때 최고값을 나타내었으나 그 이상의 점토 농도에서는 오히려 감소하였다. 본 연구 결과로부터 소량의 점토 첨가는 PVA/PAM 나노복합재료 필름의 열적, 기계적 성질을 증가시키는데 도움이 된다는 것을 알았다.

Keywords

References

  1. K. E. Strawhecker and E. Manias, Chem. Mater., 2, 2943 (2000)
  2. I. Cendoya, L. Lopez, A. Alegria, and C. Mijangos, J. Polym. Sci.; Part B: Polym. Phys., 39,1968 (2001) https://doi.org/10.1002/polb.1172
  3. K. Nakane, T. Yamashita, K. Iwakura, and F. Suzuki, J. Appl. Polym. Sci., 74,133 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID-APP16>3.0.CO;2-N
  4. F. Suzuki, K. Nakane, and J. S. Piao, J. Mater. Sci., 31. 1335 (1996) https://doi.org/10.1007/BF00353114
  5. G. Legaly, Smectitic Clays as Ionic Macromolecules. Elsevier, London, 1986
  6. P. C. LeBaron, Zhen Wang, and J. P. Thomas, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  7. Y. Kojima, A. Usuki, M. Kawasumi, and A. Okada, J. Mater. Res., 8,1185 (1993) https://doi.org/10.1557/JMR.1993.1185
  8. P. B. Messersmith and E. P. Giannelis. Chem. Mater., 5. 1064 (1993) https://doi.org/10.1021/cm00032a005
  9. K. Yano, A. Usuki, T. Kurauchi, and O. Kamigaito, J. Polym. Sci.; Part A: Polym. Chem., 31. 2493 (1993) https://doi.org/10.1002/pola.1993.080311009
  10. J.-H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, J. Appl. Polym. Sci., 90, 3208 (2003) https://doi.org/10.1002/app.12996
  11. J. W. Gilman, Appl. Clay Sci., 15, 31 (1999) https://doi.org/10.1016/S0169-1317(99)00019-8
  12. N. Ogata, S. Kawakage, and T. Ogihara, J. Appl. Polym. Sci., 66, 573 (1997) https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<573::AID-APP19>3.0.CO;2-W
  13. G. Lagaly, Appl. Clay Sci., 15, 1 (1999) https://doi.org/10.1016/S0169-1317(99)00009-5
  14. G. Lagaly, Developments in Ionic Polymers, Elsevier, London, Vol. 2, pp 77-140 (1986)
  15. W. F. Jaynes and J. M. Bigham, Clays and Clay Minerals, 35, 440 (1987) https://doi.org/10.1346/CCMN.1987.0350604
  16. E. P. Giannelis, Adv. Mater., 8, 29 (1996) https://doi.org/10.1002/adma.19960080104
  17. L. A. Utracki, Clay-Containing Polymeric Nanocomposites, Rapra Technology Ltd., Shawbury, Vol. 1, Chap. 1 (2004)
  18. S. K. Ham, M. H. Jung, and J.-H. Chang, Polymer (Korea), 30, 1 (2006)
  19. S. H. Hsiao, G. S. Liou, and L. M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001) https://doi.org/10.1002/app.1306
  20. Y. Ke, J. Lu, X. Yi, J. Zhao, and Z. Qi, J. Appl. Polym. Sci., 78, 808 (2000) https://doi.org/10.1002/1097-4628(20001024)78:4<808::AID-APP140>3.0.CO;2-9
  21. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004) https://doi.org/10.1016/j.polymer.2004.05.012
  22. J. - H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005) https://doi.org/10.1002/app.22382
  23. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Chem. Mster., 8, 2628 (1996) https://doi.org/10.1021/cm960102h
  24. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001) https://doi.org/10.1021/ma000565f
  25. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003) https://doi.org/10.1002/app.11884
  26. J.-H. Chang, B. S. Seo, and D. H Hwang, Polymer, 43, 2969 (2002) https://doi.org/10.1016/S0032-3861(02)00125-8
  27. H. R. Frischer, L. H. Gielgens, and T. P. Koster, M. Acta. Polym., 50, 122 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  28. T. Agag and T. Takeichi, Polymer, 41, 7083 (2000) https://doi.org/10.1016/S0032-3861(00)00064-1
  29. T. D. Fornes, P. J. Yoon, D. Lunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002) https://doi.org/10.1016/S0032-3861(02)00400-7
  30. S. Y. Narn, K. S. Sung, S. W. Chon, and J. W. Rhim, Membrane J., 12, 255 (2002)
  31. J.-H. Chang and B. Y. Jo, J. Appl. Polym. Sci., 60, 939 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960516)60:7<939::AID-APP3>3.0.CO;2-N
  32. K. K. Chawla, Composite Materials Science and Engineering, Springer-Verlag, New York, 1987
  33. W. A. Curtin, J. Am. Ceram Soc., 74, 2837 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06852.x