DOI QR코드

DOI QR Code

Screening Anti-inflammatory Actinomycetes Isolated from Seaweeds and Marine Sediments

해조류 및 해양저질에서 항 염증성의 방선균 선발

  • Park, Nam-Hee (Department of Biotechnology, Pukyong National University) ;
  • Hong, Yong-Ki (Department of Biotechnology, Pukyong National University) ;
  • Cho, Ji-Young (Department of Marine Biotechnology, Soonchunhyang University)
  • 박남희 (부경대학교 생물공학과) ;
  • 홍용기 (부경대학교 생물공학과) ;
  • 조지영 (순천향대학교 해양생명공학과)
  • Published : 2006.08.31

Abstract

The anti-inflammatory activities of marine actinomycetes were surveyed. In total, 363 strains were isolated from marine sediments, seaweed tissue, and seaweed rhizosphere. Of these, strains 16 and 291-11 showed the most potent anti-inflammatory activity in phorbol-ester-induced mouse ear edema and erythema assays. Strains 16 and 291-11 were isolated from the rhizosphere of the brown seaweeds Sargassum thunbergli and Undaria pinnatifida, respectively, and were identified as Streptomyces macrosporeus and St. praecox, respectively, using 165 rDNA sequence analysis.

Keywords

References

  1. Bull, AT., A.C. Ward and M. Goodfellow. 2000. Search and discovery strategic for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev., 64, 573-606 https://doi.org/10.1128/MMBR.64.3.573-606.2000
  2. Charan, R.D., G. Schlingmann, J. Janso, V. Beman, X. Feng and G.T. Carter. 2004. Diazepinomicin, a new antimicrobial alkaloid from a marine Micromonospora sp. J. Nat. Prod., 67, 1431-1433 https://doi.org/10.1021/np040042r
  3. Erba, E., D. Bergamaschi, S. Ronzoni, M. Faretta, S. Taverna, M. Bonfanti, C.V. Catapano, G. Faircloth, J. Jimeno and M. D'Incalci. 1999. Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. Br. J. Cancer, 80, 971-980 https://doi.org/10.1038/sj.bjc.6690451
  4. Jacobson, P.B., L.A. Marshall, A. Sung and R.S. Jacobs. 1990. Inactivation of human synovial fluid phospholipase $A_2$ by the marine natural product, manoalide. Biochem. Pharmacol., 39, 1557-1564 https://doi.org/10.1016/0006-2952(90)90521-L
  5. Jensen, P.R. and W. Fenical. 2000. Marine microorganisms and drug discovery: Current status and future potential. In: Drugs from the Sea, Fusetani, N., ed. Karger, Basel, Swiss, 6-29
  6. Lechevalier, H.A. and M.P. Lechevalier. 1981. Isolation to the order Actinomycetales. In: The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, Starr, M.P. et al., eds. Springer-Verlag, New York, 1915-1922
  7. Manam, R.R., S. Teisan, D.J. White, B. Nicholson, J. Grodberg, S.T.C. Neuteboom, K.S. Lam, D.A. Mosca, G.K. Lloyd and B.C.M. Potts. 2005. Lajollamycin, a nitro-tetraene spiro-b-lactone-g-lactam antibiotic from the marine actinomycete Streptomyces nodosus. J. Nat. Prod., 68, 240-243 https://doi.org/10.1021/np049725x
  8. Mayer, A.M.S., V.J. Paul, W. Fenical, J.N. Norris, M.S. de Carvalho and R.S. Jacobs. 1993. Phospholipase A2 inhibitors from marine algae. Hydrobiologia, 260/261, 521-529 https://doi.org/10.1007/BF00049065
  9. Miao, S., M.R. Anstee, K. LaMarco, J. Matthew, L.H.T. Huang and M.M. Brasseur. 1997. Inhibition of bacterial RNA polymerases. Peptide metabolites from the cultures of Streptomyces sp. J. Nat. Prod., 60, 858-861 https://doi.org/10.1021/np960709c
  10. Mitchell, S.S., B. Nicholson, S. Teisan, K.S. Lam and B.C.M. Potts. 2004. Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J. Nat. Prod., 67, 1400-1402 https://doi.org/10.1021/np049970g
  11. Mincer, T.J., P.R. Jensen, C.A. Kauffman and W. Fenical. 2002. Widespread and persistent populations of a major new marine Actinomycete taxon in ocean sediments. Appl. Environ. Microbiol., 68, 5005-5011 https://doi.org/10.1128/AEM.68.10.5005-5011.2002
  12. Moore, B.S., J.A. Trischman, D. Seng, D. Kho, P.R. Jensen and W. Fenical. 1999. Salinamides, anti-inflammatory depsipeptides from a marine streptomycete. J. Org. Chem., 64, 1145-1150 https://doi.org/10.1021/jo9814391
  13. Moran, M.A., L.T. Rutherford and R.E. Hosson. 1995. Evidence for indigenous Streptomyces populations in a marine environment determined with a 16S rRNA probe. Appl. Environ. Microbiol., 61, 3695-3700
  14. Serhan, C.N. 2005. Novel w-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther., 105, 7-21 https://doi.org/10.1016/j.pharmthera.2004.09.002
  15. Thompson, J.D., D.G. Higgins and TJ. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res., 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  16. Yoon, J.H., S.T. Lee and Y.H. Park. 1996. Inter- and intra-specific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences: Int. J. Syst. Bacteriol., 48, 187-194 https://doi.org/10.1099/00207713-48-1-187

Cited by

  1. Antibacterial benzaldehydes produced by seaweed-derived Streptomyces atrovirens PK288-21 vol.78, pp.5, 2006, https://doi.org/10.1007/s12562-012-0531-3
  2. Isolation and Structural Determination of the Antifouling Diketopiperazines from Marine-Derived Streptomyces praecox 291-11 vol.76, pp.6, 2012, https://doi.org/10.1271/bbb.110943
  3. Induction of Antifouling Diterpene Production byStreptomyces cinnabarinusPK209 in Co-Culture with Marine-DerivedAlteromonassp. KNS-16 vol.76, pp.10, 2006, https://doi.org/10.1271/bbb.120221
  4. Glycoglycerolipids Isolated from Marine DerivedStreptomyces coelescensPK206-15 vol.76, pp.9, 2006, https://doi.org/10.1271/bbb.120354