DOI QR코드

DOI QR Code

Korea Brassica Genome Project: Current Status and Prospective

배추 유전체열구의 현황과 전망

  • Choi, Su-Ryun (Department of Horticulture, College of Natural Science, Chungnam National University) ;
  • Park, Jee-Yong (National Institute of Agricultural Biotechnology, RDA) ;
  • Park, Beom-Seok (National Institute of Agricultural Biotechnology, RDA) ;
  • Kim, Ho-Il (National Institute of Agricultural Biotechnology, RDA) ;
  • Lim, Yong-Pyo (Department of Horticulture, College of Natural Science, Chungnam National University)
  • 최수련 (충남대학교 농업생명과학대학 식물자원학부) ;
  • 박지영 (농업생명공학연구원 배추제놈팀) ;
  • 박범석 (농업생명공학연구원 배추제놈팀) ;
  • 김호일 (농업생명공학연구원 배추제놈팀) ;
  • 임용표 (충남대학교 농업생명과학대학 식물자원학부)
  • Published : 2006.09.30

Abstract

Brassica rape is an important species used as a vegetable, oil, and fodder worldwide. It is related phylogenically to Arabidopsis thaliana, which has already been fully sequenced as a model plant. The 'Multinational Brassica Genome Project (MBGP)'was launched by the international Brassica community with the aim of sequencing the whole genome of B. rapa in 2003 on account of its value and the fact that it has the smallest genome among the diploid Brassica. The genome study was carried out not only to know the structure of genome but also to understand the function and the evolution of the genes comprehensively. There are two mapping populations, over 1,000 molecular markers and a genetic map, 2 BAC libraries, physical map, a 22 cDHA libraries as suitable genomic materials for examining the genome of B. rapa ssp. pekinensis Chinese cabbage. As the first step for whole genome analysis, 220,000 BAC-end sequences of the KBrH and KBrB BAC library are achieved by cooperation of six countries. The results of BAC-end sequence analysis will provide a clue in understanding the structure of the genome of Brassica rapa by analyzing the gene sequence, annotation and abundant repetitive DHA. The second stage involves sequencing of the genetically mapped seed BACs and identifying the overlapping BACs for complete genome sequencing. Currently, the second stage is comprises of process genetic anchoring using communal populations and maps to identify more than 1,000 seed BACs based on a BAC-to-BAC strategy. For the initial sequencing, 629 seed BACs corresponding to the minimum tiling path onto Arabidopsis genome were selected and fully sequenced. These BACs are now anchoring to the genetic map using the development of SSR markers. This information will be useful for identifying near BAC clones with the seed BAC on a genome map. From the BAC sequences, it is revealed that the Brassica rapa genome has extensive triplication of the DNA segment coupled with variable gene losses and rearrangements within the segments. This article introduces the current status and prospective of Korea Brassica Genome Project and the bioinformatics tools possessed in each national team. In the near future, data of the genome will contribute to improving Brassicas for their economic use as well as in understanding the evolutional process.

유전체 연구란 목적하는 유전체의 구조를 밝히고 가지고 있는 모든 유전자의 기능 및 진화과정을 망라하여 이해하고자 하는 것이다. 계통발생학상 애기장대와 연관되어 있는 Brassica rapa는 채소, 유지 및 사료로 이용되는 중요한 작물의 하나이다. Brassica rapa의 유전체 연구를 착수하는 데는 적합한 유전학적 재료 및 유전체 재료가 있어야 한다. 우리는 배추 (Brassica rapa spp. pekinensis)를 재료로 하여 표준 mapping 집단을 개발하여, 78계통으로 구성된 DH집단과 약 250 계통으로 구성된 RI집단을 개발하였다. 2가지 제한효소 (HintIII, BamHI)를 이용해 세균인공염색체 (BAC) library (KBrH, KBrB)를 만들었고, 이들은 각각 56,592개와 50,688개의 클론으로 구성되어 있다. 또한 배추의 각기 다른 부위를 이용하여 만든 22가지의 cDNA library를 이용하여 평균 575bp의 길이를 가지는 104,914개의 EST 분석을 실시 하였다. 세계적으로 'Multinational Brassica Genome Project (MBGP)' 조직이 구성되었고 배추의 전 염기서열 분석을 하기로 2003년 결정되었다. 그 첫 단계로 104,914개의 BAC 클론의 BAC-end 염기서열분석이 제안되어 2006년 9월 5개국 공동 프로젝트로 추진하여 완성하게 되었다. 이러한 BAC-end 염기서열분석의 결과는 유전자의 염기서열 해석, 및 풍부하게 존재하는 반복염기서열 DNA를 분석함으로써 배추의 유전체 구조를 이해할 수 있는 실마리를 주었다. BAC 클론의 전체 염기서열분석은, 비록 단편 내에 유전자의 결실이 변화무쌍하게 일어나지만 배추 DNA 단편이 유전체에서 광범위하게 삼중복으로 존재함을 나타냈다. 이러한 BAC-end 염기서열을 아기장대 염기서열에 비교하여 629개의 종자 BAC을 선정하게 되었고, 이들의 염기서열 분석을 완성하였다. MBGP에서는2단계로서 배추의 전 유전체 염기서열 분석을 추진하게 되었고, 유전자지도에 위치한 종자 BAC을 이용하여 인접한 BAC 클론을 찾아 염기서열 분석하는 BAC-to-BAC 방법을 추진하고 있으며 8개국에서 참여하여 현재 염기서열 분석을 추진 중 이다. 최근에 각 국에서는 생물정보학기법을 활용한 염기서열 분석 기반에 대하여 많은 토론이 진행되고 있다. 앞으로 다양한 유전체 정보가 축적됨에 따라 배추의 유전체 구조를 이해하고 농업적으로 적용하고자 하는데 기여를 할 것이다.

Keywords

References

  1. Chyi YS, Hoenecke ME, Sernyk JL (1992) A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome 35: 746-757 https://doi.org/10.1139/g92-115
  2. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101: 1001-1007 https://doi.org/10.1007/s001220051573
  3. Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M (1998) Quantitative karyotyping of three diploid Bressice species by imaging methods and localization of 45s rDNA loci on the identified chromosomes. Theor Appl Genet 96: 325-330 https://doi.org/10.1007/s001220050744
  4. Hong CP, Lee SJ, Park JY, Plaha P, Park YS, Lee YK, Choi JE, Kim KY, Lee JH, Lee J, Jin H, Choi SR, Lim YP (2004) Construction of a BAC library of Korean ginseng and initial analysis of BAC-end sequences. Mol Gen Genomics 271: 709-716
  5. Howell EC, Baker GC, Jones GH, Kearsey MJ, King GJ, Kop EP, Ryder CD, Teakle GR, Vicente JG, Armstrong J (2002) Integration of cytogenetic and genetic linkage maps of Bressice oleracea. Genetics 161: 1225-1234
  6. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Annals of botany 95: 229-235 https://doi.org/10.1093/aob/mci016
  7. Kim JS, Chung TV, King JG, Jin[lyp3] M, Yang TJ, Jin YM, Kim HI, Park BS (2006) A Sequence-Tagged Linkage Map of Brassica rapa. Genetics 174: 29-39 https://doi.org/10.1534/genetics.106.060152
  8. Koo DH, Lim YP, Hurr YK, Bang JW (2004) A high resolution karyotype of Bressice rapa ssp. pekinensis revealed by pachytene analysis and multicolor fluorescence in situ hybridization. Theor Appl Genet 109: 1346-1352 https://doi.org/10.1007/s00122-004-1771-0
  9. Koornneff M, Vanderveen JH (1983) Trisomies of Arabidopsis thaliana and the location of linkage groups. Genetica 61: 41-46 https://doi.org/10.1007/BF00563230
  10. Kulikova O, Gualtieri G, Geurts R, Kim DJ, Cook D, Huguet T, de Jong JH, Fransz PF, Bisseling T (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27: 49-58 https://doi.org/10.1046/j.1365-313x.2001.01057.x
  11. Kunzel G, Korzun L and Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154: 397-412
  12. Lim KB, De Jong H, Yang TJ, Park JY, Kwon SJ, Kim JS, Lim MH, Kim JA, Jin M, Jin YM (2005) Characterization of rDNAs and tandem repeats in heterochromatin of Brassica rapa. Mol Cells 19: 436-444
  13. Lim KB, Yang TJ, Hwang YJ, Kwon SJ, Kim JA, Choi BS, Lim MH, Kim JS, Jin M, Park JY et al. (2006) Characterization of the major centromere and pericentromere retrotransposons in Brassice rapa and distribution in the related Brassica species. Plant J. In press
  14. Love CG, Batley J, Lim G, Robinson AJ, Savage D, Singh D, Spangenberg GC, Edwards D (2004) New computational tools for Brassica genome research. Comp Funct Genom 5: 276-280 https://doi.org/10.1002/cfg.394
  15. Love CG, Robinson, AJ, Lim GAC, Hopkins CJ, Batley J, Baker G, Spangenberg GC, Edwards D (2005) Bressice ASTRA: an integrated database for Bressice genomic research. Nucleic Acids Res 33: 656-659 https://doi.org/10.1093/nar/gki036
  16. Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108: 1103-12 https://doi.org/10.1007/s00122-003-1522-7
  17. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164(1): 359-72
  18. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15: 516-25 https://doi.org/10.1101/gr.3531105
  19. Mahairas GG, Wallace JC, Smith K, Swartzell S, Holzman T, Keller A, Shaker R, Furlong J, Young J, Zhao S, Adams MD, Hood L. (1999) Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome. Proc Natl Acad Sci USA 96: 9739-44
  20. McGrath JM and Quiros CF (1991) Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea. Theor Appl Genet 82: 668-673
  21. Nozaki T, Kumazaki A, Koba T, Ishikawa K, Ikehashi H (1997) Linkage analysis among loci for RAPDs, isozymes and some agronomic traits in Brassica campestris L. Euphytica 95: 115-123 https://doi.org/10.1023/A:1002981208509
  22. O'Neill CM, Bancroft I (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23: 233-43 https://doi.org/10.1046/j.1365-313x.2000.00781.x
  23. Park JY, Koo DH, Hong CP, Lee SJ, Jeon JW, Lee SH, Yun PY, Park BS, Kim HR, Bang JW, Plaha P, Bancroft I, Lim YP. (2005) Physical Mapping and Microsynteny of Brassica rapa ssp. pekinensis Genome Corresponding to a 222 kb Gene-Rich Region of Arabidopsis Chromosome 4 and Partially Duplicated on Chromosome 5. Mol Gen Genomics 274: 579-588 https://doi.org/10.1007/s00438-005-0041-4
  24. Parkin lAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Idnetification of the A and C genomes of amphidiploid Bressice nepus (oilseed rape). Genome 38: 1122-1131 https://doi.org/10.1139/g95-149
  25. Parkin lA, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46: 291-303 https://doi.org/10.1139/g03-006
  26. Parkin lA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171: 765-81 https://doi.org/10.1534/genetics.105.042093
  27. Rana D, van den Boogaart T, O'Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft I (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40: 725-33 https://doi.org/10.1111/j.1365-313X.2004.02244.x
  28. Rich TCG (1991) Crucifers of Great Britain and Ireland. Botanical Society of the British Isles, London. 336
  29. Sandhu D, Champoux JA, Bondareva SN, Gill KS (2001) Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group IS chromosomes. Genetics 157: 1735-1747
  30. Snowdon RJ, Friedrich T, Friedt W, Kohler W (2002) Identifying the chromosomes of the A- and C-genome diploid Brassica species B. rapa (syn. campestris) and B. oleracea in their amphidiploid B. napus. Theor Appl Genet 104: 533-538 https://doi.org/10.1007/s00122-001-0787-y
  31. Song KM, Suzuki JY, Slocum MK, Williams PH and Osborn TC (1991) A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length loci. Theor Appl Genet 82: 296-304 https://doi.org/10.1007/BF02190615
  32. Suwabe K, lketani H, Nunome T, Kage T, Hirai M (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104: 1092-1098 https://doi.org/10.1007/s00122-002-0875-7
  33. Teutonico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa, and comparison to linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89: 885-894
  34. U. N. (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7: 389-452
  35. Vender JC, Smith HO, Hood L (1996) A new strategy for genome sequencing. Nature 381: 364-366 https://doi.org/10.1038/381364a0
  36. Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JI, Jin M, Park JY, Lim MH, Kim HI, Kim SH et al. (2005) The Korea Brassica Genome Project: A glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genomics 6: 138-146 https://doi.org/10.1002/cfg.465
  37. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim VP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequencelevel analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18: 1339-1347 https://doi.org/10.1105/tpc.105.040535

Cited by

  1. Current status of Brassica rapa functional genome research in Korea vol.37, pp.2, 2010, https://doi.org/10.5010/JPB.2010.37.2.166