DOI QR코드

DOI QR Code

RFLP Analysis of the mtDNA COI Region in Four Abalone Species

  • Park, Choul-Ji (Shellfish Genetic and Breeding Research Center, NFRDI) ;
  • Kijima, Akihiro (Education and Research Center of Marine Bio-resources, Tohoku University)
  • 발행 : 2006.09.30

초록

The cytochrome c oxidase subunit I (COI) gene region of mitochondrial DNA (mtDNA) was examined in four abalone species to estimate its utility as a genetic marker using restriction fragment length polymorphism (RFLP) analysis. The utility was evaluated in terms of genetic divergence and relationships among Haliotis discus hannai, H. rufescens, H. rubra, and H. midae in both hemispheres of the world. There was clear genetic divergence in the mtDNA COI region between all pairs of the four species. Moreover, relationships among the abalone species were reflected in their geographical distributions and morphological characteristics. Therefore, RFLP analysis of the mtDNA COI region is a suitable genetic marker for the estimation of genetic divergence and relationships among abalone species. However, it is not effective for the evaluation of genetic differences within abalone species.

키워드

참고문헌

  1. Baldwin, B.S., M. Black, O. Sanjur, R. Gustafson, R.A. Lutz and R.C. Vrijenhoek. 1996. A diagnostic molecular marker for zebra mussels (Dreissena polymorpha) and potentially co-occurring bivalves: mitochondrial COl. Mol. Mar. BioI. Biotechnol., 5, 9-14
  2. Berry, A.J., J.W. Ajioka and M. Kreitman. 1991. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics, 129, 1111-1117
  3. Boudry, P., S. Heurtebise, B. Collet, F. Cornette and A. Gerard. 1998. Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamark), and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J. Exp. Mar. BioI. Ecol., 226, 279-291 https://doi.org/10.1016/S0022-0981(97)00250-5
  4. Brown, L.D. 1993. Biochemical genetics and species relationship within the genus Haliotis (Gastropoda: Haliotidae). J. Moll. Stud., 59, 429-443 https://doi.org/10.1093/mollus/59.4.429
  5. Carvalho, G.R and T.J. Pitcher. 1995. Molecular Genetics in Fisheries. Chapman and Hall, New York, 141 pp
  6. Cox, K.W. 1962. California Abalones, Family Haliotidae. Fish Bull., California, 118, 1-133
  7. Dauphin Y., J.P. Cuif, H. Mutvei and A. Denis. 1989. Mineralogy, chemistry and ultrastructure of the ex- temal shell-layer in ten species of Haliotis with reference to H tuberculata (Mollusca: Archeogastropoda). Bull. Geol. Inst. Univ. Uppsala, 15, 7-38
  8. Felsenstein, J. 1995. PHYLIP (Phylogeny Inference Package), version 3.57c. University of Washington, Seattle, Washington
  9. Hara, M. and Y Fujio. 1992. Genetic relationship among abalone species. Fish Genet. Breed. Sci., 17, 55 -61
  10. Hoeh, W.R., D.T. Stewart, B.W Sutherland and E. Zouros. 1996. Cytochrome c oxidase sequence comparisons suggest an unusually high rate of mitochondrial DNA evolution in Mytilus (Mollusca: Bivalvia). Mol. Biol. Evol., 13, 418-421 https://doi.org/10.1093/oxfordjournals.molbev.a025600
  11. Ikeda, M. and N. Taniguchi. 2002. Genetic variation and divergence in populations of ayu Plecoglossus altivelis, including endangered subspecies, inferred from PCR-RFLP analysis of the mitochondrial DNA D-loop region. Fish. Sci., 68,18-26 https://doi.org/10.1046/j.1444-2906.2002.00384.x
  12. Karl, S.A. and J.C. Avise. 1992. Balancing selection at allozyme loci in oysters: implications from nuclear RFLPs. Science, 256, 100-102 https://doi.org/10.1126/science.1348870
  13. Kim, S.K., J.Y Hwan, H.S. Hyun, O.U. Sung, K.M. Hee and O.M. You. 2000. Phylogenetic relationship among Haliotis spp. distributed in Korea by the RAPD analysis. Kor. J. Genetics, 22, 43-49
  14. Kocher, T.D., W.K. Thomas, A. Meyer, S.V Edwards, S. Paabo, EX. Villablanca and x.c. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc, Natl. Acad. Sci. USA, 86, 6196-6200
  15. Lee, S.Y and S.H. Kim. 2003. Genetic variation and discrimination of Korean arkshell Scapharca species (Bivalvia, Arcoida) based on mitochondrial COl gene sequences and PCR-RFLP. Kor. J. Genetics, 25, 309-315
  16. Lee, YH. and YD. Vacquier. 1995. Evolution and systematics in Haliotidae (Mollusca: Gastropoda): inferences from DNA sequences of sperm lysin. Mar. Biol., 124, 264-278
  17. Lindberg, D.R. 1992. Evolution, distribution and system- atics of Haliotidae. In: Abalone of the World: Biology, Fisheries and Culture. S. A. Shepherd, M. Tegner and S. Guzman, eds, Blackwell, London, 3-18
  18. Mamuris, Z., C. Stamatis, S.A. Moutou, A.P. Apostolidis and C. Triantaphyllidis. 2001. RFLP analysis of mitochondrial DNA to evaluate genetic variation in striped red mullet (Mullus surmuletus L.) and red mullet (Mullus barbatus L.) populations. Mar. Biotechnol., 3, 264-274 https://doi.org/10.1007/s101260000075
  19. Martin, A.P. and S.R. Palumbi. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. USA, 90, 4087-4091
  20. Metz, E.C., R. Robles-Sikisaka and V.D. Vacquier. 1998. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA. Proc. Natl. Acad. Sci. USA, 95, 10676-10681
  21. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 76, 5269-5273
  22. Nei, M. and F. Tajima. 1981. DNA polymorphism detec- table by restriction endonucleases. Genetics, 97, 145-163
  23. Park, C.J. and A. Kijima. 2005. Genetic divergence and relationship among four abalone species by isozyme and AFLP analyses. J. Aquacult., 18, 252-259
  24. Pickery, R. 1991. Chronological list of the references to the original descriptions of recent subgenera and species belonging to the family Haliotidae. Gloria Maris (Bull. Belg. Soc. Conch., Antwerpen), 29, 105-118
  25. Sugaya, T., M. Ikeda and N. Taniguchi. 2002. Relatedness structure estimated by micro satellite DNA and mitochondrial DNA polymerase chain reaction - restriction fragment length polymorphism analyses in the wild population of kuruma prawn Penaeus japonicus. Fish. Sci., 68, 793-802 https://doi.org/10.1046/j.1444-2906.2002.00495.x
  26. Tabata, K. and N. Taniguchi. 2000. Differences between Pagrus major and Pagrus auratus through mainly mtDNA control region analysis. Fish. Sci., 66, 9-18 https://doi.org/10.1046/j.1444-2906.2000.00032.x