A Comparison of the Anti-inflammatory Activity of Surfactin A, B, C, and D from Bacillus subtilis

  • Kim, Sung-Dae (Laboratory of Veterinary Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University) ;
  • Cho, Jae-Youl (School of Biotechnology and Bioengineering, Kangwon National University) ;
  • Park, Hwa-Jin (College of Biomedical Science and Engineering, and the Regional Research Center, Inje University) ;
  • Lim, Chang-Ryul (College of Biomedical Science and Engineering, and the Regional Research Center, Inje University) ;
  • Lim, Jong-Hwan (College of Veterinary Medicine, Chungnam National University) ;
  • Yun, Hyo-In (College of Veterinary Medicine, Chungnam National University) ;
  • Park, Seung-Chun (Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Kyungpook National University) ;
  • Kim, Sang-Keun (College of Veterinary Medicine, Chungnam National University) ;
  • Rhee, Man-Hee (Laboratory of Veterinary Physiology & Signaling, College of Veterinary Medicine, Kyungpook National University)
  • Published : 2006.10.31

Abstract

Natural surfactins are a mixture of isoforms that differ slightly in their physiological properties. In previous research, we obtained surfactin A, B, C, and D from the Bacillus subtilis complex BC1212. We found that surfactin C inhibited nitric oxide (NO)-production and suppressed the expression of pro-inflammatory cytokine mRNA, which was stimulated by $1{\mu}g/ml$ of lipopolysaccharide (LPS) in murine RAW264.7 cells. In order to compare the anti-inflammatory effects of surf actin isoforms, we examined the inhibition of LPS-induced NO production and the pro-inflammatory cytokine expression level. Surfactin C inhibited the LPS-induced NO production in murine macrophage RAW264.7 cells the most. In addition, surf actin C was superior to other surfactin's subtypes regarding inhibiting the expression of inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein 1 (MCP-1). Finally, the anti-inflammatory activity of surf actin C is the most potent, compared with surfactin A, B, and D.

Keywords

References

  1. Arima, K., A. Kakinuma, and G. Tamura. 1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31: 488-494 https://doi.org/10.1016/0006-291X(68)90503-2
  2. Bernheimer, A. W. and L. S. Avigad. 1970. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol. 61: 361-369 https://doi.org/10.1099/00221287-61-3-361
  3. Boisvert, W. A. 2004. Modulation of atherogenesis by chemokines. Trends Cardiovasc. Med. 14: 161-165 https://doi.org/10.1016/j.tcm.2004.02.006
  4. Charo, I. F. and M. B. Taubman. 2004. Chemokines in the pathogenesis of vascular disease. Circ. Res. 95: 858-866 https://doi.org/10.1161/01.RES.0000146672.10582.17
  5. Cho, J. Y., S. C. Park, T. W. Kim, K. S. Kim, J. C. Song, S. K. Kim, H. M. Lee, H. J. Sung, H. J. Park, Y. B. Song, et al. 2006. Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa Raf. J. Pharm. Pharmacol. 58: 113-119 https://doi.org/10.1211/jpp.58.1.0014
  6. Gallucci, S., C. Provenzano, P. Mazzarelli, F. Scuderi, and E. Bartoccioni. 1998. Myoblasts produce IL-6 in response to inflammatory stimuli. Int. Immunol. 10: 267-273 https://doi.org/10.1093/intimm/10.3.267
  7. Hwang, M. H., J. H. Lim, H. I. Yun, M. H. Rhee, J. Y. Cho, W. H. Hsu, and S. C. Park. 2005. Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1 beta and inducible nitric oxide synthase and nitric oxide production in RAW 264.7 cells. Biotechnol. Lett. 27: 1605-1608 https://doi.org/10.1007/s10529-005-2515-1
  8. Kameda, Y., S. Oira, K. Matsui, S. Kanatomo, and T. Hase. 1974. Antitumor activity of Bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem. Pharm. Bull. (Tokyo) 22: 938-944 https://doi.org/10.1248/cpb.22.938
  9. Kim, K., S. Y. Jung, D. K. Lee, J. K. Jung, J. K. Park, D. K. Kim, and C. H. Lee. 1998. Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem. Pharmacol. 55: 975-985 https://doi.org/10.1016/S0006-2952(97)00613-8
  10. Klein, R. D., G. L. Su, A. Aminlari, W. H. Alarcon, and S. C. Wang. 1998. Pulmonary LPS-binding protein (LBP) upregulation following LPS-mediated injury. J. Surg. Res. 78: 42-47 https://doi.org/10.1006/jsre.1998.5396
  11. Laskin, D. L. and K. J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. Toxicol. 35: 655-677 https://doi.org/10.1146/annurev.pa.35.040195.003255
  12. Lee, D. E., H. Y. Kim, I. H. Song, S. K. Kim, J. H. Seul, and H. S. Kim. 2004. Effect of leptin on the expression of lipopolysaccharide-induced chemokine KC mRNA in the mouse peritoneal macrophages. J. Microbiol. Biotechnol. 14: 722-729
  13. Lee, D. H., B. J. Park, M. S. Lee, J. B. Choi, J. K. Kim, J. H. Park, and J. C. Park. 2006. Synergistic effect of Staphylococcus aureus and LPS on silica-induced tumor necrosis factor production in macrophage cell line J774A.1. J. Microbiol. Biotechnol. 16: 136-140
  14. Lee, Y. B., A. Nagai, and S. U. Kim. 2002. Cytokines, chemokines, and cytokine receptors in human microglia. J. Neurosci. Res. 69: 94-103 https://doi.org/10.1002/jnr.10253
  15. Lim, J. H., B. K. Park, M. S. Kim, M. H. Hwang, M. H. Rhee, S. C. Park, and H. I. Yun. 2005. The anti-thrombotic activity of surfactins. J. Vet. Sci. 6: 353-355
  16. Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6: 3051-3064 https://doi.org/10.1096/fasebj.6.12.1381691