Genome Snapshot of Paenibacillus polymyxa ATCC $842^T$

  • Jeong, Hae-Young (Laboratory of Microbial Genomics, Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Ji-Hyun (Laboratory of Microbial Genomics, Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Yon-Kyoung (Laboratory of Microbial Genomics, Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Seong-Bin (Laboratory of Microbial Genomics, Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Chang-Hoon (Laboratory of Microbial Genomics, Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Park, Seung-Hwan (Laboratory of Microbial Genomics, Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Published : 2006.10.31

Abstract

Bacteria belonging to the genus Paenibacillus are facultatively anaerobic endospore formers and are attracting growing ecological and agricultural interest, yet their genome information is very limited. The present study surveyed the genomic features of P. polymyxa ATCC $842^T$ using pulse-field gel electrophoresis of restriction fragments and sample genome sequencing of 1,747 reads (approximately 17.5% coverage of the genome). Putative functions were assigned to more than 60% of the sequences. Functional classification of the sequences showed a similar pattern to that of B. subtilis. Sequence analysis suggests nitrogen fixation and antibiotic production by P. polymyxa ATCC $842^T$, which may explain its plant growth-promoting effects.

Keywords

References

  1. Achouak, W., P. Normand, and T. Heulin. 1999. Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int. J. Syst. Bacteriol. 49: 961-967 https://doi.org/10.1099/00207713-49-3-961
  2. Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek 64: 253-260 https://doi.org/10.1007/BF00873085
  3. Bae, D.-W., Y.-S. Kawk, J.-T. Lee, D.-Y. Son, S.-S. Chun, and H.-K. Kim. 2000. Purification and characterization of a novel antifungal protein from Paenibacillus macerans PM1 antagonistic to rice blast fungus, Pyricularia oryzae. J. Microbiol. Biotechnol. 10: 805-810
  4. Beatty, P. H. and S. E. Jensen. 2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can. J. Microbiol. 48: 159-169 https://doi.org/10.1139/w02-002
  5. Benedict, R. G. and A. F. Langlykke. 1947. Antibiotic activity of Bacillus polymyxa. J. Bacteriol. 54: 24-25
  6. Cheong, H., S.-Y. Park, C.-M. Ryu, J. F. Kim, S.-H. Park, and C.-S. Park. 2005. Diversity of root-associated Paenibacillus spp. in winter crops from the southern part of Korea. J. Microbiol. Biotechnol. 15: 1286-1298
  7. Choi, K. K., C. H. Park, S. Y. Kim, W. S. Lyoo, S. H. Lee, and J. W. Lee. 2004. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 15: 1009-1013
  8. Chung, Y. R., C. H. Kim, I. H. Hwang, and J. S. Chun. 2000. Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50: 1495-1500 https://doi.org/10.1099/00207713-50-4-1495
  9. Heyndrickx, M., K. Vandemeulebroecke, P. Scheldeman, K. Kersters, P. de Vos, N. A. Logan, A. M. Aziz, N. Ali, and R. C. Berkeley. 1996. A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura, 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al., 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int. J. Syst. Bacteriol. 46: 988-1003 https://doi.org/10.1099/00207713-46-4-988
  10. Jung, W.-J., J.-H. Kuk, K.-Y. Kim, T.-H. Kim, and R.-D. Park. 2005. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. J. Microbiol. Biotechnol. 15: 274-280
  11. Konz, D., S. Doekel, and M. A. Marahiel. 1999. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J. Bacteriol. 181: 133-140
  12. Koumoutsi, A., X. H. Chen, A. Henne, H. Liesegang, G. Hitzeroth, P. Franke, J. Vater, and R. Borriss. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186: 1084-1096 https://doi.org/10.1128/JB.186.4.1084-1096.2004
  13. Lander, E. S. and M. S. Waterman. 1988. Genomic mapping by fingerprinting random clones: A mathematical analysis. Genomics 2: 231-239 https://doi.org/10.1016/0888-7543(88)90007-9
  14. Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334 https://doi.org/10.1111/j.1574-6941.1997.tb00384.x
  15. Lee, Y.-E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021
  16. Martin, N. I., H. Hu, M. M. Moake, J. J. Churey, R. Whittal, R. W. Worobo, and J. C. Vederas. 2003. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124-13132 https://doi.org/10.1074/jbc.M212364200
  17. McSpadden Gardener, B. B. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258 https://doi.org/10.1094/PHYTO.2004.94.11.1252
  18. Moszer, I., L. M. Jones, S. Moreira, C. Fabry, and A. Danchin. 2002. SubtiList: The reference database for the Bacillus subtilis genome. Nucleic Acids Res. 30: 62-65 https://doi.org/10.1093/nar/30.1.62
  19. Moyne, A. L., T. E. Cleveland, and S. Tuzun. 2004. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol. Lett. 234: 43-49 https://doi.org/10.1111/j.1574-6968.2004.tb09511.x
  20. Rhodes-Roberts, M. 1981. The taxonomy of some nitrogen fixing Bacillus species with special reference to nitrogen fixation, pp. 315-335. In R. C. W. Berkeley and M. Goodfellow (eds.). Aerobic Endospore-Forming Bacteria. Classification and Identification. Academic Press, London
  21. Rosado, A. S., J. D. van Elsas, and L. Seldin. 1997. Reclassification of Paenibacillus durum (formerly Clostridium durum Smith and Cato 1974) Collins et al. 1994 as a member of the species P. azotofixans (formerly Bacillus azotofixans Seldin et al. 1984) Ash et al. 1994. Int. J. Syst. Bacteriol. 47: 569-572
  22. Ryu, C.-M., J. Kim, O. Choi, S.-Y. Park, S.-H. Park, and C.-S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991
  23. Shida, O., H. Takagi, K. Kadowaki, L. K. Nakamura, and K. Komagata. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47: 289-298 https://doi.org/10.1099/00207713-47-2-289
  24. Tsuge, K., T. Akiyama, and M. Shoda. 2001. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol. 183: 6265-6273 https://doi.org/10.1128/JB.183.21.6265-6273.2001
  25. Ueda, T., Y. Suga, N. Yahiro, and T. Matsuguchi. 1995. Remarkable $N_2$-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177: 1414-1417 https://doi.org/10.1128/jb.177.5.1414-1417.1995
  26. Yoon, J.-H., S.-J. Kang, S.-H. Yeo, and T.-K. Oh. 2005. Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int. J. Syst. Evol. Microbiol. 55: 2339-2344 https://doi.org/10.1099/ijs.0.63771-0