Abstract
In order to explain entirely dynamic fracture process induced by blasting in rock mass, it needs to consider detonation pressure and gas pressure acting on blasthole wall simultaneously. In this study, prior to simulating the coupling between gas flow and rock mass, we analyzed effects of gas pressure-time history, length of cracks and equation of state adopted to calculate the gas pressure on the gas flow within a radial fracture created by single-hole blasting. The effects were investigated on two assumptions: (a) the radial fracture was composed of 5 cracks which were 0.01 m in length and 0.001 m in asperity each and (b) the PETN explosive which diameter was 36 mm was charged in a blasthole of 45 mm diameter. It was concluded that the maximum gas pressure and its travel time were dependent on characteristics of charged explosives and geometrical properties of radial fracture.
발파에 의한 암반의 동적 파괴 과정을 설명하기 위해서는 발생한 폭굉압과 가스압의 작용을 동시에 연구해야 한다. 발파 과정에서 폭굉압과 가스압의 발파공 벽면에의 작용을 동시에 모델화하여 이에 따른 암반과의 상호 작용을 수치해석하는 연구에 앞서, 본 연구에서는 단일 발파공에서 생성된 단일 균열망에서의 가스 유동에 미치는 가스압 이력, 균열 길이 그리고 가스압을 산정하기 위해 적용한 상태 방정식의 영향에 대해 분석 하였다. 이를 위하여 단일공 발파에 의해 길이 0.01 m, 간극 0.001 m으로 동일한 5개의 균열로 구성된 단일 균열망이 생성되었다고 가정하였다. 또한 지름이 45 mm인 발파공에 지름이 36 mm인 PEIN을 장약하였다고 가정하여 수치해석을 수행하였다. 그 결과, 균열망을 구성하는 개별 균열에 작용하는 최대 가스압력과 그 도달시간은 사용 폭약의 특성과 균열망의 기하학적 특성에 의해 결정되는 것으로 나타났다.