DOI QR코드

DOI QR Code

Hydrogenation and Electrochemical Characteristics of Amorphous-nanostructured Mg-based Alloys

  • Gebert, A. (Leibniz-Institute for Solid State and Materials Research IFW Dresden) ;
  • Khorkounov, B. (Leibniz-Institute for Solid State and Materials Research IFW Dresden) ;
  • Schultz, L. (Leibniz-Institute for Solid State and Materials Research IFW Dresden)
  • Published : 2006.10.28

Abstract

In the development of new hydrogen absorbing materials for a next generation of metal hydride electrodes for rechargeable batteries, metastable Mg-Ni-based compounds find currently special attention. Amor phous-nanocrystalline $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ alloys were produced by mechanical alloying and melt-spinning and characterized by means of XRD, TEM and DSC. On basis of mechanically alloyed Mg-Ni-Y powders, complex hydride electrodes were fabricated and their electrochemical behaviour in 6M KOH (pH=14,8) was investigated. The electrodes made from $Mg_{63}Ni_{30}Y_7$ powders, which were prepared under use of a SPEX shaker mill, with a major fraction of nanocrystalline phase reveal a higher electrochemical activity far hydrogen reduction and a higher maximum discharge capacity (247 mAh/g) than the electrodes from alloy powder with predominantly amorphous microstructure (216 mAh/g) obtained when using a Retsch planetary ball mill at low temperatures. Those discharge capacities are higher that those fur nanocrystalline $Mg_2Ni$ electrodes. However, the cyclic stability of those alloy powder electrodes was low. Therefore, fundamental stability studies were performed on $Mg_{63}Ni_{30}Y_7$ and $Mg_{50}Ni_{30}Y_{20}$ ribbon samples in the as-quenched state and after cathodic hydrogen charging by means of anodic and cathodic polarisation measurements. Gradual oxidation and dissolution of nickel governs the anodic behaviour before a passive state is attained. A stabilizing effect of higher fractions of yttrium in the alloy on the passivation was detected. During the cathodic hydrogen charging process the alloys exhibit a change in the surface state chemistry, i.e. an enrichment of nickel-species, causing preferential oxidation and dissolution during subsequent anodization. The effect of chemical pre-treatments in 1% HF and in $10\;mg/l\;YCl_3/1%\;H_2O_2$ solution on the surface degradation processes was investigated. A HF treatment can improve their anodic passivation behavior by inhibiting a preferential nickel oxidation-dissolution at low polarisation, whereas a $YCl_3/H_2O_2$ treatment has the opposite effect. Both pre-treatment methods lead to an enhancement of cathodically induced surface degradation processes.

Keywords

References

  1. K. Hong: J. Alloys Comp., 321 (2001) 307 https://doi.org/10.1016/S0925-8388(01)00957-4
  2. J.J. Reilly: Z. Phys. Chemie NF, 117 (1979) 155 https://doi.org/10.1524/zpch.1979.117.117.155
  3. N. Cui, B. Luan, H. K Lui, H. J. Zhao and S. X. Dou: J. Power Sources, 55 (1995) 263 https://doi.org/10.1016/0378-7753(95)02195-M
  4. D. Mu, Y. Hatano and K. Watanabe: J. Alloys Comp., 334 (2002) 232 https://doi.org/10.1016/S0925-8388(01)01759-5
  5. A. Gasiorowski, W. Iwasieczko, D. Skoryna, H. Drulis and M. Jurczyk: J. Alloys Comp., 364 (2004) 283 https://doi.org/10.1016/S0925-8388(03)00544-9
  6. S. Nohara, N. Fujida, S. G. Zhang, H. Inoue and C. Iwakura:J. Alloys and Comp., 267 (1998) 76 https://doi.org/10.1016/S0925-8388(97)00491-X
  7. Y. Hatano, T. Tachikawa, D. Mu, T. Abe, K. Watanabe and S. Morozumi: J. Alloys Comp., 330-332 (2002) 816 https://doi.org/10.1016/S0925-8388(01)01455-4
  8. C. Rongeat, M.-H. Grosjean, S. Riggeri, M. Dehmas, S. Bourlot, S. Marchotte and L. Roue: J. Power Sources, 158 (2006) 747 https://doi.org/10.1016/j.jpowsour.2005.09.006
  9. Y. Zhang, S.-K. Zhang, L.-X. Chen, Y.-Q. Lei and Q.-D. Wang: Int. J. Hydrogen Energy, 26 (2001) 801 https://doi.org/10.1016/S0360-3199(01)00025-8
  10. Y. Zhang, L.-X. Chen, Y.-Q. Lei and Q.-D. Wang: Elec trochim., Acta 47 (2002) 1739 https://doi.org/10.1016/S0013-4686(02)00012-9
  11. H. Yang, H. Yuan, Z. Zhou, G. Wang and Y. Zhang: J. Alloys Comp., 305 (2000) 282 https://doi.org/10.1016/S0925-8388(00)00738-6
  12. Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng and A. B. Yu: J. Alloys Comp., 381 (2004) 234 https://doi.org/10.1016/j.jallcom.2004.03.083
  13. F.-J. Liu and S. Suda, J. Alloys Comp., 232 (1996) 212 https://doi.org/10.1016/0925-8388(95)01931-6
  14. M. Dabala, K. Brunelli, E. Napoletani and M. Magrini:Surface and Coating Technology, 172 (2003) 227 https://doi.org/10.1016/S0257-8972(03)00336-0
  15. S. G. Kim, A. Inoue and T. Masumoto: Mater. Transactions JIM, 32 (1991) 609 https://doi.org/10.2320/matertrans1989.32.609
  16. B. Khorkounov, A. Gebert, Ch. Mickel and L. Schultz:J. Alloys Comp., 416 (2006) 110 https://doi.org/10.1016/j.jallcom.2005.08.021
  17. A. Gebert, B. Khorkounov, U. Wolff, Ch. Mickel, M. Uhlemann and L. Schultz: J. Alloys Comp., 419 (2006) 319 https://doi.org/10.1016/j.jallcom.2005.10.008
  18. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press Oxford, 1966