Capacitively Coupled Plasma Simulation for Low-k Materials Etching Process Using $H_2/N_2$ gas

저 유전 재료의 에칭 공정을 위한 $H_2/N_2$ 가스를 이용한 Capacitively Coupled Plasma 시뮬레이션

  • 손채화 (한국전기연구원 전기물리연구그룹)
  • Published : 2006.12.01

Abstract

The resistance-capacitance (RC) delay of signals through interconnection materials becomes a big hurdle for high speed operation of semiconductors which contain multi-layer interconnections in smaller scales with higher integration density. Low-k materials are applied to the inter-metal dielectric (IMD) materials in order to overcome the RC delay. Relaxation continuum (RCT) model that includes neutral-species transport model have developed to model the etching process in a capacitively coupled plasma (CCP) device. We present the parametric study of the modeling results of a two-frequency capacitively coupled plasma (2f-CCP) with $N_2/H_2$ gas mixture that is known as promising one for organic low-k materials etching. For the etching of low-k materials by $N_2/H_2$ plasma, N and H atoms have a big influence on the materials. Moreover the distributions of excited neutral species influence the plasma density and profile. We include the neutral transport model as well as plasma one in the calculation. The plasma and neutrals are calculated self-consistently by iterating the simulation of both species till a spatio-temporal steady state profile could be obtained.

Keywords

References

  1. The International Technology Roadmap for Semiconductors (Semiconductor Industry Association, San Jose, Ca, 1991)
  2. G. S. Oehrlein et al., Low Dielectric Materials for IC Applications, edited by P. S. Ho, J. Leu, and W. W. Lee, (Springer, Berlin, 2003)
  3. G. Maier, Prog. Polym. Sci., 26, 3 (2001) https://doi.org/10.1016/S0079-6700(00)00043-5
  4. T. Makabe and K. Maeshige, in Advences in Low Temperature RF plasmas, edited by T. Makabe (Elsevier, Amsterdam, 2002)
  5. The Annual Report (Association of Super-Advanced Electronics Technologies (ASET), Tokyo, 2002)
  6. T. E. F. M, Standaert, P. J. Matsuo, S. D. Allen, G. S. Oehrlein, T. J. Dalton, T. M. Lu, and R. Gutmann, J. Vac. Sci. Technol. A17, 741 (1999)
  7. T. E. F. M. Standaert, P. J. Matsuo, X. Li, G. S. Oehrlein, T. -M. Lu, R. Gutmann, C.T. Rosenrnayer, J. W. Bartz, J. G. Langan, and W. R. Entley, J. Vac. Sci. Technol. A19, 435 (2001) https://doi.org/10.1116/1.1349201
  8. M. Fukasawa, T. Tatsumi, T. Hasegawa, S. Hirano, K. Miyata, and S. Kadomura, Proc. '21st Symp. Dry Process (Tokyo 1999) p.221
  9. T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei, and S. M. Sze, Thin Solid Films 398, 632 (2001) https://doi.org/10.1016/S0040-6090(01)01330-X
  10. S. T. Chen, G. S. Chen, T. J. Yang, T. C. Chang, and W. H. Yang, Electrochem. Solid-State Lett., 6, F4 (2003) https://doi.org/10.1149/1.1525550
  11. H. Nagai, M. Hiramatsu, M. Hori, and T. Goto, Jpn. J. Appl. phys., 42, L212 (2003) https://doi.org/10.1143/JJAP.42.L212
  12. H. Nagai, S. Takashima, M. Hiramatsu, M. Hori, and T Goto, J. Appl. phys., 91, 2615 (2002) https://doi.org/10.1063/1.1435825
  13. D. Fuard, O. Joubert, L. Vallier, and M. Bonvalot, J. Vac. Sci. Technol. B19, 447 (2001) https://doi.org/10.1116/1.1358856
  14. K. Maeshige, G. Washio, T Yagisawa, and T Makabe, J. Appl. Phys., 91, 9494 (2002) https://doi.org/10.1063/1.1478138
  15. T. Ohmori, T. K. Goto, T. Kitajima, and T.Makabe, Appl, Phys, Lett., 83, 4637(2003) https://doi.org/10.1063/1.1630163
  16. K. Okazaki, T. Makabe, and Y. Yamaguchi, Appl, Phys, Lett., 54, 1742 (1989) https://doi.org/10.1063/1.101277
  17. T Makabe, N. Nakano, and Y. Yamaguchi, Phys. Rev. A 45, 2520(1992) https://doi.org/10.1103/PhysRevA.45.2520
  18. T. Makabe, Advences in Low Temperature RF plasmas (Elsevier, 2002)
  19. P. J. Chantry, J. Appl. Phys., 62, 1141 (1987) https://doi.org/10.1063/1.339662
  20. K. Maeda, T. Makabe, N. Nakano, S. Bzenic, and Z. Lj. Petrovic, Phys, Rev. E, 55, 5901 (1997) https://doi.org/10.1103/PhysRevE.55.5901
  21. C. H. Shon and T. Makabe, IEEE Trans. Plasma Sci., 32, 390 (2004) https://doi.org/10.1109/TPS.2004.828121
  22. J. R. Hiskes, J. Appl. Phys., 51, 4592 (1980) https://doi.org/10.1063/1.328352
  23. J. R. Hiskes, J. Appl, Phys., 70, 3409 (1991) https://doi.org/10.1063/1.349284
  24. C. Gorse, M. Capitelli, J. Bretagne, and M: Bacal, Chern. Phys., 93, 1 (1985) https://doi.org/10.1016/0301-0104(85)85044-8
  25. B. Gordiets, C. M. Ferreira, M. J. Pinheiro, and A. Ricard, Plasma Sources Sci. Technol., 7, 363 (1998) https://doi.org/10.1088/0963-0252/7/3/015