반도체 웨이퍼 ID 인식을 위한 다중템플릿형 영상분할 알고리즘 개발

Development of a Multi-template type Image Segmentation Algorithm for the Recognition of Semiconductor Wafer ID

  • 안인모 (마산대학 컴퓨터전기공학부)
  • 발행 : 2006.12.01

초록

This paper presents a method to segment semiconductor wafer ID on poor quality images. The method is based on multiple templates and normalized gray-level correlation (NGC) method. If the lighting condition is not so good and hence, we can not control the image quality, target image to be inspected presents poor quality ID and it is not easy to identify and then recognize the ID characters. Conventional several method to segment the interesting ID regions fails on the bad quality images. In this paper, we propose a multiple template method, which uses combinational relation of multiple templates from model templates to match several characters of the inspection images. To find out the optimal solution of multiple template model in ID regions, we introduce newly-developed snake algorithm. Experimental results using images from real FA environment are presented.

키워드

참고문헌

  1. Naoya Tanaka, 'Development of General Forms Reading Techniques for Optical Character Recognition Systems,' NEC Res. & Develop., Vol.43, No.1, pp. 25-28, 2002
  2. Daisuke Nishiwaki, Atsushi Sato, and Jun Tsukumo, 'Research and Development for OCR Technologies,' NEC Res. & Develop., Vol.43, No.1, pp. 29-32, 2002
  3. 齊藤文彦, '一般化 ハフ変換による 半導體 ウエハ 識別 番号認識,' 日本精密工學會誌, Vol. 61, No. 10, pp. 1470-1474, 1995
  4. 齊藤文彦, '組合せ Hough 変換を 用いた 半導體ベアチツプ ID 認識,' 日本精密工學會誌, Vol. 65, No. 1, pp. 73-77, 1999
  5. Eiko Suzuki, Hajime Matsuda, Teiichirou Chiba, and Akira Mori, 'New Identification System for Individual Wafer Management,' Proc. the 2000 ninth International Symposium on Semiconductor Manufacturing, pp. 33-36, 2000
  6. Hee Sub Lee, Jae Wook Jeon, Joon-Woo Kim, Sung-Jong Chung, and Jong-Eun Byun, 'The Development of a 12-inch Wafer Prealigner with Optical Character Recognition', IECON Proc., pp. 215-219, 2001
  7. R. Haralick and L. Shapiro, 'Survey: Image segmentation technique,' CVGIP, vol. 29, pp 100-132, Jan. 1985
  8. S. Horowits and T. Pavlidis, 'Picture segmentation by a tree traversal algorithm,' J. CM, vol 23, pp. 368-388, Apr. 1976
  9. S. M. Lee, 'Low rate video coding using 3-D segmentation with two change detection masks', ISO/IEC/JTC1/SC29/WG11 MPEG93/941, Nov, 1993
  10. C. K. Chow and T. Kaneko, Boundary detection of radiographic images by a thresholding method, in Frontiers of Pattern Recognition (S. Watanabe, Ed.), pp. 61-82, Academic Press, New York, 1972
  11. A. Rosenfeld and A.C.Kak, 'Digital picture processing,' Academic Press, New York, 1976
  12. S. Manickam, S.D.Roth, T. Bushman, 'Intelligent and Optimal Normalized Correlation for High-Speed Pattern Matching, Datacube Technical Paper,' Datacube Incorpolation, 2000
  13. 강동중, 하종은, 'Visual $C^{++}$을 이용한 디지털 영상처리' 사이텍미디어, pp300-308, 2003
  14. R.E. Neapolitan and K. Naimipour, Foundations of algorithms using $C^{++}$ pseudocode, 2nd edition, Jones and Barlett Publishing, 1988
  15. Amini, A., Weymouth, T.E., Jain, R.C., Using dynamic programming for solving variational problems in vision, IEEE Trans. Pattern Analysis and Machine Intelligence 12(9), 1991
  16. D.J. Kang, A fast and stable algorithm for medical images, Pattern Recognition Letters 20, pp.507-512, 1999 https://doi.org/10.1016/S0167-8655(99)00019-7
  17. D.J. Kang, J.E. Ha, and I.S. Kweon, Fast Object Recognition using Dynamic Programming from Combination of Salient Line Groups, Pattern Recognition, Vol.36(1), pp.79-90, 2003 https://doi.org/10.1016/S0031-3203(02)00046-8