References
- IEEE 1363, Standard Specifications for Publickey Cryptography, 2000
- NIST, Recommended elliptic curves for federal government use, May 1999. http://csrc.nist.gov/encryption
-
A. Reyhani-Masoleh and M.A. Hasan, 'A New Construction of Massey-Omura Parallel Multipliers over GF(
$2^{m}$ ),' IEEE Transactions on Computers, Vol. 51, No.5, pp. 511-520, May. 2002 https://doi.org/10.1109/TC.2002.1004590 - M.C. Rosner, 'Elliptic Curve Cryptosystems on Reconfigurable Hardware,' MA thesis, Worcester Polytechnic Institute, 1998
-
G. Orlando and C. Parr, 'A High Performance Reconfigurable Elliptic Curve Processor for GF(
$2^{m}$ ),' CHES 2000, LNCS 1965, 2000 -
S. Kwon, K. Gaj, C.H. Kim, and C.P. Hong' 'Efficient Linear Array for Multiplication in GF(
$2^{m}$ ) Using a Normal Basis for Elliptic Curve Cryptography,' CHES 2004, LNCS 3156, pp. 76-91, 2004 - J.R. Goodman, Energy Scalable Reconfigurable Cryptographic Hardware for Portable Applications, PhD thesis, MIT, 2000
-
J.H. Guo and C.L. Wang, 'Digit-Serial Systolic Multiplier for Finite Field GF(
$2^{m}$ ),' lEE Proc. Comput. Digit. Tech., vol. 145, no 2, pp. 143-148, Mar. 1999 -
C.H. Kim, S.D. Han and C.P. Hong, 'An Efficient Digit-Serial Systolic Multiplier for Finite Field GF(
$2^{m}$ ),' Proc. on 14th Annual IEEE International Conference of ASIC/SOC, pp. 361-365, 2001 - N. Gura, S.C. Shantz, H.E. Sumit Gupta, V. Gupta, D. Finchelstein, E. Goupy, and D. Stebila, 'An End-to-End Systems Approach to Elliptic Curve Cryptography,' CHES '02, LNCS 2523, pp. 349-365, 2002
-
A. Reyhani-Masoleh and' M.A. Hasan' 'Efficient Digit-Serial Normal Basis Multipliers over GF(
$2^{m}$ ),' ACM Trans. Embedded Computing Systems (TECS), special issue on embedded systems and security, vol. 3, no. 3, pp. 575-592, Aug. 2004 https://doi.org/10.1145/1015047.1015053 - A. Reyhani-Masoleh and M.A. Hasan, 'Low Complexity Word-Level Sequential Normal Basis Multipliers,' 16th IEEE Transactions on Computers, vol. 54, No 2, pp. 98-110, 2005 https://doi.org/10.1109/TC.2005.29
- J. L. Massey and J .K. Omura, 'Computational method and apparatus for finite field arithmetic,' US Patent No. 4587627, 1986
-
L. Gao and G.E. Sobelman, 'Improved VLSI Designs for Multiplication and Inversion in GF(
$2^{m}$ ) over Normal Bases,' Proc. 13th Ann. IEEE Int'/ ASIC/SOC Conf., pp.97-101, 2000