Semantics Aware Packet Scheduling for Optimal Quality Scalable Video Streaming

다계층 멀티미디어 스트리밍을 위한 의미기반 패킷 스케줄링

  • 원유집 (한양대학교 전자통신컴퓨터공학과) ;
  • 전영균 (한양대학교 전자통신컴퓨터공학과) ;
  • 박동주 (한양대학교 전자통신컴퓨터공학과) ;
  • 정제창 (한양대학교 전자통신컴퓨터공학과)
  • Published : 2006.10.15

Abstract

In scalable streaming application, there are two important knobs to tune to effectively exploit the underlying network resource and to maximize the user perceivable quality of service(QoS): layer selection and packet scheduling. In this work, we propose Semantics Aware Packet Scheduling (SAPS) algorithm to address these issues. Using packet dependency graph, SAPS algorithm selects a layer to maximize QoS. We aim at minimizing distortion in selecting layers. In inter-frame coded video streaming, minimizing packet loss does not imply maximizing QoS. In determining the packet transmission schedule, we exploit the fact that significance of each packet loss is different dependent upon its frame type and the position within group of picture(GOP). In SAPS algorithm, each packet is assigned a weight called QoS Impact Factor Transmission schedule is derived based upon weighted smoothing. In simulation experiment, we observed that QOS actually improves when packet loss becomes worse. The simulation results show that the SAPS not only maximizes user perceivable QoS but also minimizes resource requirements.

계층적 압축 기법을 지원하는 스트리밍 시스템 응용은 제한된 네트워크 자원의 효과적인 활용과 사용자가 느끼는 화질을 최대로 해야 한다. 이를 위해서는 적절한 전송 계층의 선택 및 패킷 인터벌 결정이 이루어져야 한다. 본 논문에서는 계층이 갖는 화질의 영향력을 바탕으로 패킷 인터벌 결정 및 계층 선택 알고리즘 SAPS를 제시한다. 인터-프레임 압축 기법을 사용하는 비디오 스트리밍 시스템에서 패킷 손실의 감소만으로는 재생 화질의 향상을 이룰 수 없고, 재생 화질에 높은 영향력을 가진 패킷의 복원율이 높아질 때, 비로소 재생 화질이 향상된다. SAPS는 패킷의 의존성 그래프를 바탕으로 전송 계층을 결정하며, 이렇게 결정된 전송 계층은 사용자가 느끼는 서비스의 품질을 최대로 만든다. 또한, 선택된 계층에 대한 패킷의 인터벌 조절을 통해 계층 선택에 의한 효과가 유지되도록 한다. 실험을 통해 SAPS 알고리즘이 사용자가 느끼는 서비스 품질의 향상뿐만 아니라, 네트워크 자원 활용도 효과적으로 이루고 있음을 보여준다.

Keywords

References

  1. J. D. Salehi, Z.-L. Zhang, J. Kurose, and D. Towsley. 'Supporting Stored Video: Reducing Rate Variability and End-to-End Resource Requirements through Optimal Smoothing,' IEEE Transactions on Networking, Vol.6, No.4, pp. 397-410, Aug. 1998 https://doi.org/10.1109/90.720873
  2. R.-l. Chang, M.-C. Chen, J.-M. Ho, and M.-T. Ko, 'An Effective and Efficient Traffic Smoothing Scheme for Delivery of Online VBR Media Streams,' in Proceedings of the Conference on Computer Communications (IEEE Infocom), March 1999 https://doi.org/10.1109/INFCOM.1999.751377
  3. S. S. Lam, S. Chow, and D. K. Y. Yau, 'An Algorithm for Lossless Smoothing of MPEG Video,' SIGCOMM Comput. Commun, Rev., Vol. 24, No.4, pp. 281-293, 1994 https://doi.org/10.1145/190809.190340
  4. W.-C. Feng and J. Rexford, 'Performance Evaluation of Smoothing Algorithms for Transmitting Prerecorded Variable-Sit-Rate Video,' IEEE Transactions on Multimedia, Vol.1, No.3, pp. 302- 312, Sept. 1999 https://doi.org/10.1109/6046.784468
  5. Z. Guo, J. Ni, and T. Yang, 'Traffic Smoothing and Bandwidth Allocation for VBR MPEG-2 Video Connections in ATM Network,' in Proof Fourth International Conference on Computer Communications and Networks, pp. 554-561, Sept. 1995
  6. O. Verscheure, P. Frossard, and J.-Y. L. Boudec, 'Optimal Media Streaming in A Rate-distortion Sense for Guaranteed Service Networks,' in Fifteenth International Symposium on Mathematical Theory of Networks and Systems, Aug. 2002
  7. S. Nelakuditi, R. Harinath, E. Kusmierek, and Z.-L. Zhang, 'Providing Smoother Quality Layered Video Stream,' in. Proceedings of NOSSDAV 2000, The 10th International Workshop on Network and Operating Systems Support for Digital Audio and Video, Jun. 2000
  8. J. M. Boyce, 'Packet Loss Resilient Transmission of MPEG Video over The Internet,' Signal Processing: Image Communication, VoI.15, pp. 7-24, Sept. 1999 https://doi.org/10.1016/S0923-5965(99)00021-1
  9. P. de Cuetos and K. W. Ross, 'Adaptive Rate Control for Streaming Stored Fine-Grained Scalable Video,' in Proceedings of the 12th international workshop on Network and operating systems support for digital audio and video, ACM Press, pp. 3-12, 2002 https://doi.org/10.1145/507670.507672
  10. T. Kim and M. H. Ammar, 'Optimal Quality Adaptation for MPEG-4 Fine-grained Scalable Video,' in Proceedings of IEEE INFOCOM 2003, Apr. 2003 https://doi.org/10.1109/INFCOM.2003.1208714
  11. Z. Jiang and L. Kleinrock, 'A Packet Selection Algorithm for Adaptive Transmission of Smoothed Video over A Wireless Channel,' J. Parallel Distrib. Comput., Vol.60, No.4, pp. 494-509, 2000 https://doi.org/10.1006/jpdc.1999.1616
  12. J. Liu, B. Li, Y. T. Hou, and I. Chlamtac, 'Dynamic Layering and Bandwidth Allocation for Multi-session Video Broadcasting with General Utiity Functions,' in Proceedings of the IEEE INFOCOM 2003, Apr. 2003
  13. P. A. Chou and Z. Miao, 'Rate-distortion Optimized Streaming of Packetized Media, Microsoft Research Center, Research Technical Report MSR-TR-2001-35, Feb. 2001
  14. Z. Miao and A. Ortega, 'Optimal Scheduling for Streaming of Scalable Media,' in Proceedings of 31th Asimolar Conference on Signals, Systems, and Computers), Nov. 2000 https://doi.org/10.1109/ACSSC.2000.911213
  15. K. Chebrolu and R.R. Rao, 'Selective Frame Discard for Interactive Video,' in Proceedings of ICC 2004, Paris, France, Jun. 2004 https://doi.org/10.1109/ICC.2004.1313320
  16. Wei Tu, Wolfgang Kellerer, and Eckehard Stein, 'Rate-Distortion Optimized Video Frame Dropping on Active Network Nodes,' in Packet Video Workshop 2004, Irvine, California, Dec. 2004
  17. J. Chakareski and P. Frossard, 'Rate-Distortion Optimized Distributed Packet Scheduling of Multiple Video Streams over Shared Communication Resources,' IEEE Transactions on Multimedia, Vol.8, pp. 207-218, Apr. 2006 https://doi.org/10.1109/TMM.2005.864284
  18. C. Perkins, RTF: Audio and Video for the Internet, Addison Wesley, 2003
  19. R. Rejaie, M. Handley, and D. Estrin, 'RAP: An End-to-End Rate-based Congestion Control Mechanism for Realtime Streams in The Internet,' in Proceedings of IEEE INFOCOM, Vol.3, pp. 1337-1345, Mar. 1999 https://doi.org/10.1109/INFCOM.1999.752152
  20. S. Song, Y. Won, and I. Song, 'Empirical Study of User Perception Behavior for Mobile Streaming, in Proceedings of the tenth ACM international conference on Multimedia, ACM Press, pp. 327-330 2002 https://doi.org/10.1145/641007.641076
  21. Y. Won and B. Shim, 'Empirical Study of VBR Traffic Smoothing in Wireless Environment,' in Innovative Internet Computing Systems Second International Workshop, ser. Lecture Notes in Computer Science, Vol.2346. Springer-Verlag Heidelberg pp.193-204, Jun. 2002
  22. S. Olsson, M. Stroppiana, and J. Baina, 'Objective Methods for Assessment of Video Quality: State of The Art,' IEEE Transactions on Broadcasting, Vol.43, No.4, pp. 487-495, December 1997 https://doi.org/10.1109/11.664028
  23. The Network Simulator: ns-2, http://www.isi.edu/nsnam/ns