DOI QR코드

DOI QR Code

A Two Mobilized-Plane Model for Soil Liquefaction Analysis

액상화해석을 위한 두 개의 활성면을 가진 구성모델

  • 박성식 (경북대학교 공과대학 토목공학과)
  • Published : 2006.10.31

Abstract

A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

본 논문에서는 정적 및 액상화와 같은 동적하중을 받는 흙의 거동해석을 위한 두 개의 활성면을 가진 구성모델을 제안하였다. 이 모델은 두 개의 활성면에 기초하고 있으며, 첫번째면은 회전하는 최대전단면을 나타내며 두 번째면은 고정된 수평면을 나타낸다. 이와 같은 두 개의 활성면을 이용하여 본 모델은 초기의 다른 응력상태하에 있는 시료의 직접단순전단시에 발생하는 주응력회전현상을 모델링할 수 있다. 제안된 모델은 초기의 응력비에 관계없이 평균유효응력이 동일할 경우에 유사한 거동을 보이는 흙의 실내실험결과를 묘사할 수 있다 그리고, 배수시 반복 직접단순전단으로 발생하는 흙의 거동 즉 제하시에 나타나는 체적감소 및 대변형에서 발생하는 체적팽창을 묘사할 수 있다. 비배수시의 흙의 정적 및 동적 거동은 배수거동에서 흙 골격사이에 존재하는 물의 구속력을 고려함으로써 해석하였다. 본 모델의 구성관계식은 응력-물의 상관관계를 동시에 묘사할 수 있는 FLAC을 이용하여 구현하였다. 배수 직접단순전단 시험을 이용한 Fraser River Sand의 실험결과를 이용하여 모델을 먼저 검증하였으며, 동일한 입력변수를 이용한 Fraser River Sand 비배수 거동의 예측치와 실험치를 비교하여 검증하였다.

Keywords

References

  1. Arthur, J. R. F., Chua, K. S., Dunstan, T. and Rodriguez del C. J. I. (1980), 'Principal stress rotation: a missing parameter', Journal of the Geotechnical Engineering Division, 106(GT4), pp.419-433
  2. Iai, S., Matsunaga, Y., and Kameoka, T. (1992), 'Analysis of undrained cyclic behavior of sand under anisotropic consolidation', Soils and Foundations, 32(2), pp.16-20 https://doi.org/10.3208/sandf1972.32.2_16
  3. Ishihara, K. (1996), Soil behaviour in earthquake Geotechnics, Clarendon Press, Oxford
  4. Itasca (2000), FLAC, version 4.0. Itasca Consulting Group Inc., Minneapolis
  5. Kabilamany, K, and Ishihara, K. (1991), 'Cyclic behaviour of sand by the multiple shear mechanism model', Soil Dynamics and Earthquake Engineering, 10(2), pp.74-83 https://doi.org/10.1016/0267-7261(91)90037-Z
  6. Kolymbas, D. (2000), The misery of constitutive modeling, Constitutive modelling of granular materials, Edited by Dimitrios Kolymbas, pp.11-24
  7. Lee, C.-J. (1991), 'Deformation of sand under cyclic simple shear loading', Proceedings of the Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, March 11-15, St. Louis, Missouri, 1, pp.33-36
  8. Lee, K.-H. and Pande, G. N. (2004), 'Development of a two-surface model in the Multilaminate framework', Proceedings of the 11th Conference on Numerical Models in Geomechanics, Ottawa, pp.139-144
  9. Matsuoka, H. (1974), 'Stress-strain relationships of sands based on the mobilized plane', Soils and Foundations, 14(2), pp.47-61 https://doi.org/10.3208/sandf1972.14.2_47
  10. NRC. (1985), Liquefaction of soils during earthquakes, National Research Council Report CETS-EE-001, National Academic Press, Washington, D.C
  11. Pande, G. N., and Sharma, K. G. (1983), 'Multi-laminate model of clays-a numerical evaluation of the influence of rotation of the principal stress axes', Int. Journal for Numerical and Analytical Methods in Geomechanics, 7, pp.397-418 https://doi.org/10.1002/nag.1610070404
  12. Roscoe, K.H. (1970), '10th Rankine Lecture: The influence of strains in soil mechanics', Geotechnique, 20, pp.129-170 https://doi.org/10.1680/geot.1970.20.2.129
  13. Sriskandakumar, S. (2004), Cyclic loading response of Fraser River sand for validation of numerical models simulating centrifuge tests, MASc Thesis, Department of Civil Engineering, UBC
  14. Vermeer, P. A. (1980), 'Formulation and analysis of sand deformation problems', Report 195 of the Geotechnical Laboratory, 142p. Delft University of Technology
  15. Wijewickreme, D. and Vaid, Y. P. (2004), 'A descriptive framework for the drained response of sands under simultaneous increase in stress ratio and rotation of principal stresses', Submitted to Soils and Foundations
  16. Wijewickreme, D., Sriskandakumar, S., and Byrne, P.M. (2005), 'Cyclic Loading Response of Loose Air-pluviated Fraser River Sand for Validation of Numerical Models Simulating Centrifuge Tests', Canadian Geotechnical Journal, 42(3), pp.550-561 https://doi.org/10.1139/t04-119