Effects of Static Magnetic Fields on Phagocytic Activity of Murine Peritoneal Macrophages

  • Eun, Jae-Soon (College of Pharmacy, Woosuk University) ;
  • Ko, Dae-Woong (College of Pharmacy, Woosuk University) ;
  • Jeon, Yong-Keun (College of Pharmacy, Woosuk University) ;
  • Lee, Kyung-A (College of Pharmacy, Woosuk University) ;
  • Park, Hoon (College of Pharmacy, Woosuk University) ;
  • Ma, Tian-Ze (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Kim, Min-Gul (Department of Pharmacology, Chonbuk National University Medical School) ;
  • Kwak, Yong-Geun (Department of Pharmacology, Chonbuk National University Medical School)
  • Published : 2006.09.25

Abstract

Electro-magnetic fields and static magnetic fields generated from diverse home/environmental sources have been reported that these could make harmful effects on the human health such as suppression of immunity and tumorigenesis. However, the mechanisms for the biologic effects of electro-magnetic fields or static magnetic fields are still remained unclear. In this study, we examined the in vitro effects of static magnetic fields (SMF) on murine peritoneal macrophages. The cells were exposed in vitro to SMF of $150{\sim}250$ or $350{\sim}450$ G in 5% $CO_2$-incubator. The phagocytic activity of murine peritoneal macrophages was inhibited under exposure to SMF. In order to provide a more complete picture of molecular mechanism for the biological effect of SMF, we compared the levels of total proteins from macrophages with or without exposure to SMF using quantitative proteomic analysis. Proteins which were differentially expressed in macrophages exposed to SMF compared with non-exposed macrophages, were identified. Among them, the levels of trypsinogen 16, lactose-binding lectin Mac-2, galactoside-binding lectin, actin-like (Put. ${\beta}-actin$, vimentin) and electron transferring flavoprotein beta polypeptide were enhanced under exposure to SMF. These results suggest that SMF can affect the phagocytic activity of macrophages via diverse mechanisms.

Keywords

References

  1. Alonso, S., Minty, A., Bourlet, Y. and Buckingham, M. (1986). Comparison of three actin-coding sequences in the mouse; evolutionary relationships between the actin genes of warm-blooded vertebrates. J. Mol. Evol. 23(1), 11-22 https://doi.org/10.1007/BF02100994
  2. Blair, A.L., Cree, I.A., Beck, J.S., Hating, M.J.G. (1988). Measurement of phagocyte chemiluminescence in a microtiter plate format. J. Immunol. Methods 112, 163-171 https://doi.org/10.1016/0022-1759(88)90352-3
  3. Boudard, F., Vallot, N., Cabaner, C. and Bastide, M. (1994). Chemiluminescence and nitrite determinations by the MALU macrophage cell line. J. Immunol. Methods 174, 259-268 https://doi.org/10.1016/0022-1759(94)90030-2
  4. Cadossi, R., Bersani, F., Cossarizza, A., Zucchini, P., Emilia, G., Torelli G., and Francechi, C. (1992). Lymphocytes and low frequency electromagnetic fields. FASEB J. 6, 2667-2674 https://doi.org/10.1096/fasebj.6.9.1612290
  5. Cherayil, B.J., Chaitovitz, S., Wong, C. and Pillai, S. (1990). Molecular cloning of a human macrophage lectin specific for galactose. Proc. Natl. Acad. Sci. U.S.A. 87, 7324-7328
  6. Cherayil, B.J., Weiner, S.J. and Pillai, S. (1989). The Mac-2 antigen is a galactose-specific lectin that binds IgE. J. Exp. Med. 170, 1959-1972 https://doi.org/10.1084/jem.170.6.1959
  7. Chok, P.W., Choon, S.P. and Benjamin, H.S. (1993). A rapid and simple microfluorometric phagocytosis assay. J. Immuno. Methods 162, 1-6 https://doi.org/10.1016/0022-1759(93)90400-2
  8. Coogan, P.F., Clapp, R.w. and Newcomb, P.A., (1996). Occupational exposure to 60-Hertz magnetic fileds and risk of breast cancer in woman. Epidemiology 7, 459-464 https://doi.org/10.1097/00001648-199609000-00001
  9. Fedoroff, S., White, R., Neal, J., Subrahmanyan, L. and Kalnins, V.I. (1983). Astrocyte cell lineage. II. Mouse fibrous astrocytes and reactive astrocytes in cultutes have vimentin- and GFP-containing intermediate filaments. Dev. Brain Res. 7, 303-315 https://doi.org/10.1016/0165-3806(83)90187-6
  10. Flipo, D., Fournier, M., Benquet, C., Roux, P., Le Boulaire, C., Pinsky, C., LaBella, F. S., and Krzystyniak, K. (1998). Increased apoptosis, changes in intracellular $Ca^{2+}$, and functional alterations in lymphocytes and macrophages after in vitro exposure to static magnetic field. J. Toxicol. Environ. Health A 54(1), 63-76 https://doi.org/10.1080/009841098159033
  11. Hellman, U., Wernstedt, C., Gonez, J. and Heldin, C.H. (1995). Improvement of an 'In-Gel' digestion procedure for the micropreparation of internal protein fragments for amino acid sequencing. Anal. Biochem. 224, 451-455 https://doi.org/10.1006/abio.1995.1070
  12. Hiraoka, M., Miyakoshi, J., Li, Y. P., Shung, B., Takebe, H., and Abe, M. (1992). Induction of c-fosgene expression by exposure to a static magnetic field in HeLaS3 cells. Cancer Res. 52, 6522-6524
  13. Holt, M.E., Ryall, M.E.T., Campbell, A.K. (1984). Albumin inhibits human polymorphonuclear leucocyte lurninol-dependent chemiluminescence. Br. J. Exp. Pathol. 65, 231-241
  14. Imajo, Y., Hiratsuka, J., Matsumiya, A., Yamamoto, M., and Nishishita, S. (1989). The effect of a static magnetic field on hamsters bearing melanoma: Cell cycle analysis by flow cytometry. Nippon Gan Chiryo Gakkai Shi 24, 1261-1265
  15. Irimura, T., Matsushita, Y., Sutton, R.C., Carralero, D., Ohannesian, D.W., Cleary, K.R., Ota, D.M., Nicolson, G.l. and Lotan, R. (1991). Increased content of an endogenous lactose- binding lectin in human colorectal carcinoma progressed to metastatic stages. Cancer Res. 51, 387-393
  16. John, E.C., Ada, M.K., David, H.M., Ethan, M.S. and Warren, S. (1991). Current protocols in immunology. Vol. 1, Wiley Interscience, A. 3.5-3.7
  17. Lachmann, P.J. and Hobert, M.J. (1978). Handbook of Experimental Immunology, 1(3A), 9
  18. Leffler, H., Masiarz, F.R. and Barondes, S.H. (1989). Soluble lactose-binding vertebrate lectins: a growing family. Biochemistry 28, 9222-9229 https://doi.org/10.1021/bi00449a039
  19. Lin, G., McCormick, J. and Johnstone, R.M. (1996). Is $\gamma-actin$ a regulator of amino acid transport- Am. J. Physiol. 270(39), C1647-C1655 https://doi.org/10.1152/ajpcell.1996.270.6.C1647
  20. McDonald, F. (1993). Effect of static magnetic fields on osteoblasts and fibroblasts in vitro. Bioelectro-magnetic 14, 187-196 https://doi.org/10.1002/bem.2250140302
  21. Meromsky, L., Lotan, R. and Raz, A. (1986). Implication of endogenous tumor cell surface lectins as mediators of cellular interactions and lung colonization. Cancer Res. 46, 5270-5275
  22. Paulus, W. and Roggendorf, W. (1988). Vimentin and glial fibrillary acidic protein are codistributed in the same intermediate filament system of malignant glioma cells in vivo. Virchows Arch. B Cell Pathol. 56, 67-70 https://doi.org/10.1007/BF02890003
  23. Phaire-Washington, L., Howard-Robinson, G., Luca, J., Roberson, J., Brako, E., McNeil, N., Williams, S., Watson, C., Igbo, T., Brako, L., Farshori, P. and Cannon, V. (1987). The inermediate filament cytoskeleton of macrophages. Scanning Microsc. 1, 775-782
  24. Pollan, M. and Gustavsson, P. (1999). High-risk occupations for breast cancer in the Swedish female working population. Am. J. Public Health 89, 875-881 https://doi.org/10.2105/AJPH.89.6.875
  25. Raz, A. and Lotan, R. (1987). Endogenous galactoside-binding lectins: a new class of functional cell surface molecules related to metastasis. Cancer Metastasis Rev 6(3), 433-452 https://doi.org/10.1007/BF00144274
  26. Rosenberg, I., Cherayil, B.J., Isselbacher, K.J. and Pillai, S. (1991). Mac-2-binding glycoproteins. Putative ligands for a cytosolic beta-galactoside lectin. J. Biol. Chem. 266, 18731-18736
  27. Rowen, L., Williams, E., Glusman, G., Linardopoulou, E., Friedman, C., Ahearn, M.E., Seto, J., Boysen, C., Qin, S., Wang, K., Kaur, A., Bloom, S., Hood, L. and Trask, B.J. (2005). Inter-chromosomal segmental duplications explain the unusual structure of PRSS3, the gene for an inhibitor-resistant trypsinogen. Mol. Biol. Evol. 22(8), 1712-1720 https://doi.org/10.1093/molbev/msi166
  28. Sahlin, S., Hed, J. and Rundquist, I. (1983). Differentiation between attached and ingested immune complexes by a fluorescence quenching cytofluorometric assay. J. Immunol, 27;60(1-2), 115-124
  29. Santoro, N., Lisi, A., Pozzi, D., Pasquali, E., Serafino, A. and Grimaldi, S. (1997). Effect of extremely low frequency (ELF) magnetic field exposure on morphological and biophysical properties of human lymphoid cell line (Raji). Biochim. Biophys. Acta. 1357, 281-290 https://doi.org/10.1016/S0167-4889(97)00032-3
  30. Scheler, C., Lamer, S., Pan, Z., Li, X.P., Salnikow, J. and Jung-blut, P. (1998). Petide mass fingerprint sequence coverage from differently stained proteins on two-dimensional electrophoresis patterns by matrix assisted laser desorptoin/ionization-mass spectrometry (MALDI-MS). Electrophoresis 19, 918-927 https://doi.org/10.1002/elps.1150190607
  31. Schiffer, D., Giordana, M.T., Migheli, A., Giaccone, G., Pezzotta, S. and Mauro, A. (1986). Glial fibrillaty acidic protein and vimentin in the experimental glial reaction of the rat brain. Brain Res. 374, 110-118 https://doi.org/10.1016/0006-8993(86)90399-9
  32. Shevchenko, A., Wilm, M., Vorm, O. and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacryl-amide gels. Anal. Chem. 68, 850-858 https://doi.org/10.1021/ac950914h
  33. Siffert, J.C., Baldacini, O., Kuhry, J.G., Wachsmann, D., Benab-delmoumene, S., Faradji, A., Monteil, H. and Poindron, P. (1993). Effects of Clostridium difficile toxin B on human monocytes and macrophages: possible relationship with cytoskeletal rear-rangement. Infect Immu. 63(3), 1082-1090
  34. Simko, M., Droste, S., Kriehuber, R. and Weiss, D.G. (2001). Stimulation of phagocytosis and free radical production in murine macrophages by 50 Hz electromagnetic fields. Eur. J. Cell Biology 80, 562-566 https://doi.org/10.1078/0171-9335-00187
  35. Tynes, T., Andersen, A., and Langmark, F. (1992). Incidence of cancer in Norwegian workers potentially exposed to electromagnetic fields. An. J. Epidemiol. 136, 81-88 https://doi.org/10.1093/oxfordjournals.aje.a116423
  36. Vinores, S.A. and Herman, M.M. (1993). Phagocytosis of myelin by astrocytes in explants of adult rabbit cerebral white matter maintained on Gelfoam matrix. J, Neuroimmunol. 43(1-2), 169-176 https://doi.org/10.1016/0165-5728(93)90068-A
  37. Walleczek, J. (1992). Electromagnetic field effects on cells of the immune system: The role of calcium signaling. FASEB J. 6, 3177-3185 https://doi.org/10.1096/fasebj.6.13.1397839
  38. Weaver, J. C., and Asturnian, R. D. (1990). The response of living cells to very weak electic fields: the thermal noise limit. Science 247, 459-462 https://doi.org/10.1126/science.2300806
  39. White, R.A., Dowler, L.L., Angeloni, S.V. and Koeller, D.M. (1996). Assignment of Etfdh, Etfu, and Etfa to chromosome 3, 7, and 13: the mouse homologs of genes responsible for glutaric acidemia type II in human. Genomics 33(1), 131-134 https://doi.org/10.1006/geno.1996.0170
  40. Woo, H.J., Shaw, L.M., Messier, J.M. and Mercurio, A.M. (1990). The major non-integrin laminin binding protein of macrophages is identical to carbohydrate binding protein 35 (Mac-2). J. Biol. Chem. 265, 7097-7099
  41. Yost, M. G. and Liburdy, R. P. (1992). Time-varying and static magnetic fields act in combination to alter calcium signal transduction in lymphocyte. FEBS Lett. 296, 117-122 https://doi.org/10.1016/0014-5793(92)80361-J