생쥐 뇌소교세포주에서 웅담추출활성성분(우르소데옥시콜린산)의 항산화 및 세포보호효과

Anti-oxidative and Cytoprotective Effect of Ursodeoxycholic Acid, an Active Compound from the Bear's Gall, in Mouse Microglia

  • 주성수 (중앙대학교 약학대학 면역학교실) ;
  • 김성근 (중앙대학교 약학대학 면역학교실) ;
  • 유영민 (상지대학교 한의과대학 병리학교실) ;
  • 류인왕 (강원대학교 자연과학대학 생명과학부) ;
  • 김경훈 (강원대학교 자연과학대학 생명과학부) ;
  • 이도익 (중앙대학교 약학대학 면역학교실)
  • Joo, Seong-Soo (Department of Immunology, College of Pharmacy. Chung-Ang University) ;
  • Kim, Seong-Kun (Department of Immunology, College of Pharmacy. Chung-Ang University) ;
  • Yoo, Yeong-Min (Department of Oriental Pathology, College of Oriental Medicine, Sangji University) ;
  • Ryu, In-Wang (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Kyung-Hoon (Division of Life Sciences, College of Natural Sciences, Kangwon National University) ;
  • Lee, Do-Ik (Department of Immunology, College of Pharmacy. Chung-Ang University)
  • 발행 : 2006.06.01

초록

퇴행성뇌질환인 치매의 정확한 원인은 아직 불분명하나 빠른 뇌세포사멸이 주요한 원인으로 알려져 있다. 특히, 알츠하이머형 치매는 다량 생성되는 활성산소에 의한 뇌세포사멸이 주요원인인 것으로 입증되고 있다. 따라서 본 연구에서는 웅담활성성분인 UDCA의 세포보호 및 항산화효과로부터 알츠하이머형 치매와 같은 퇴행성 뇌질환억제 또는 치료물질로서의 가능성을 입증하고자 하였고 뇌의 대식세포인 소교세포(microglia)를 cell model로 하였다. MTT 실험결과 UDCA에 의한 세포보호효과는 $7.5\;{\mu}g/mL$ 주변 농도에서 관찰되었고 NO에 의한 세포손상 유도억제효과를 확인하였다(Fig. 2). 이와 같은 결과는 형광현미경하에서 보다 명확히 관찰되어(Fig. 3) 결국 UDCA에 의한 항세포사효과가 있음을 알 수 있었다. UDCA의 항산효과는 활성산소인 $H_2O_2$의 단백질 분해 저해능을 관찰하는 금속이온촉매 산화효과를 통해 확인하였다(Fig. 4). 즉, UDCA는 농도의존적으로$(1{\sim}100\;{\mu}g/mL)$ 단백질 분해억제능을 보였으며 $100\;{\mu}g/mL$ 이상의 농도에서 양성대조군인 ascorbic acid와 유사한 억제효과를 나타냈다. 이와 같은 UDCA의 항산화효과는 $10\;{\mu}g/mL$ 전후에서 관찰되어 세포보호효과를 나타내는 농도$(7.5\;{\mu}g/mL)$와 큰 차이가 없는 것으로 사료되었고 따라서 UDCA의 농도범주는 일괄적 적용이 가능할 것으로 판단된다. 결론적으로 웅담활성성분인 UDCA는 일반적으로 사용하여온 간질환 및 소화계질환의 보조요법제의 개념을 벗어나 항염 및 항산화효과에 잠재능을 가지며 나아가 뇌신경세포를 보호하고 세포사를 차단하여 알츠하이머와 같은 퇴행성뇌질환 조절 후보물질로 적용이 가능할 것으로 판단되나 보다 심도 있는 in vivo 및 임상적 차원의 연구가 요구된다.

The in vitro cytoprotective and anti-oxidative effects of ursodeoxycholic acid, a major active compound from bear's gall were investigated in mouse brain microglia. In the present study, we wished to scrutinize the potential role of UDCA as an anti-neurodegenerative agent in neurodegenerative disease such as Alzheimer's disease. This concept was supported by the multiple preliminary studies in which UDCA has an anti-inflammatory effect in microglial cells. In the study, we found that $7.5\;{\mu}g/mL$ UDCA was effective in the protection of cells from $H_2O_2$ damage, a reactive oxygen, and the resuIt was coincided with the anti-apoptotic effect in DAPI staining. Moreover, the metal-catalyzed oxidation study showed that UDCA has antioxidant effect as much as ascorbic acid at $50{\sim}100\;{\mu}g/mL$. In conclusion, these study results suggested that neuro-degenerative diseases such as Alzheimer's disease probably caused by over-expressed beta amyloid peptide in elderly people can be controled by UDCA through an anti-inflammatory, anti-oxidative and anti-apoptotic effect. The evidences showed in the study may be references for more in-depth in vivo and clinical studies for a candidate of anti-neurodegenerative therapy in the near future.

키워드

참고문헌

  1. Southorn PA, Powis G. Free radicals in medicine. II. Involvement in human. Mayo Clin. Proc. 63: 390-408 (1988)
  2. Hu F, LU R, Ming L. Free radical scavenging activity of extracts prepared from fresh leaves of selected chinese medical plants. Fitoterapia 75: 14-23 (2004) https://doi.org/10.1016/j.fitote.2003.07.003
  3. Kim SM, Cho YS, Sung SK. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J. Food Sci. Technol. 33:626-632(2001)
  4. Montine TJ, Diana NM, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD. Lipid peroxidation in aging brain and Alzheimer's disease. Free Radic. Biol. Med. 33: 620-626 (2002) https://doi.org/10.1016/S0891-5849(02)00807-9
  5. Floyd RA, Hensley K. Oxidative stress in brain aging: Implications for therapeutics of neurodegenerative diseases. Neurobiol. Aging 23: 759-807 (2002)
  6. Yamaguchi S, Qian ZZ, Nohara T. Bile acids of Fel Ursi. Chem Pharm Bull (Tokyo) 46: 1653-1655 (1998) https://doi.org/10.1248/cpb.46.1653
  7. Zhang HY, Chen YD, Zhuang, G.L. Pharmacological action of bear bile extract in mice. Chinese Trad. Herb. Drugs 27: 10-12 (1996)
  8. Jin ZG, Zhang TY, Liang WB, Liang CG. Effects of bear bile injection on blood lipid. Chinese Trad. Herb. Drugs 28: 4-5 (1997)
  9. Kavamura T, Koiaumi F, Ishimori A. Effect of ursodeoxycholic acid on water immersion restraint stress ulcer of rats. Nippon Shokakibyo Gakkai Zasshi 86: 2373-2378 (1989)
  10. Cho TS, Lee SM, Yeom JH, Yu EJ, Lim SW, Jang BS, Kim YH, Yu YM, Park Mil. Anti-stress effects of ursodeoxycholic acid on the restraint stress in rats. Yakhak Hoeji 39: 548-553 (1995)
  11. Cho TS, Lee JC, Cho SI, Lee SM. A study on anti-stress activities of cholic acid derivatives. J. Appl. Pharmacol. 6: 232-241 (1998)
  12. Rodrihues CM, Ma X, Linehan-Stieers C, Fan G, Kren BT, Steer CJ. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ. 6: 842-854 (1999) https://doi.org/10.1038/sj.cdd.4400560
  13. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81: 741-766 (2001) https://doi.org/10.1152/physrev.2001.81.2.741
  14. Petrova TV, Akama KT, Van Eldik LJ. Selective modulation of BV-2 microglial activation by prostaglandin E(2). Differential effects on endotoxin-stimulated cytokine induction. J. Biol. Chem. 274: 28823-28827 (1999) https://doi.org/10.1074/jbc.274.40.28823
  15. Kim WK, Jang PG, Woo MS, Han IO, Piao HZ, Lee K, Lee H, Joh TH, Kim HS. A new anti-inflammatory agent KL-1037 represses proinflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology 47: 243-252 (2004) https://doi.org/10.1016/j.neuropharm.2004.03.019
  16. Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 1548: 197-206 (2004)
  17. Joo SS, Won TJ, Lee DI. Potential role of ursodeoxycholic acid in suppression of nuclear factor kappa B in microglial cell line (BV-2). Arch. Pharm. Res. 27: 954-960 (2004) https://doi.org/10.1007/BF02975850
  18. Joo SS, Won TJ, Hwang KW, Lee DJ. Inhibition of iNOS expression via ursodeoxycholic acid in murine microglial cells, BV-2 cell line. Immune Network 5: 45-49 (2005) https://doi.org/10.4110/in.2005.5.1.45
  19. Stevens MG and Oslen Sc. Comparative analysis of using MTT and XTT in colorimetric assays for quantitative bovine neutrophil bactericidal activity. J. Immunol. Meth. 157: 225-231 (2001)
  20. Kocha T, Yamaguchi M, Ohtaki H, Fukuda T, Aoyagi T. Hydrogen peroxide-mediated degradation of protein: different oxidation modes of copper- and iron-dependent hydroxyl radicals on the degradation of albumin. Biochem. Biophys. Acta. 1337: 319-326 (1997) https://doi.org/10.1016/S0167-4838(96)00180-X
  21. Mayo JC, Tan DX, Sainz RM, Natarajan M, Lopez-Burillo S, Reiter RJ. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. Biochem. Biophys. Acta. 1620: 139-150 (2003) https://doi.org/10.1016/S0304-4165(02)00527-5
  22. Kim YS, Han JA, Cheong TB, Ryu JC, Kim JC. Protective effect of heat shock protein 70 against oxidative stresses in human corneal fibroblasts. J. Korean Med. Sci. 194: 591-597 (2004)