DOI QR코드

DOI QR Code

Growth and Maturation of the Brown Seaweed Costaria costata Transplanted for the Wildstock Enhancement

해조장 조성을 위하여 이식한 갈조류 쇠미역(Costaria costata)의 생장과 성숙

  • Kim, Young-Dae (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Song, Hong-In (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Hong, Jung-Pyo (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Jeon, Chang-Yeong (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Kim, Su-Kyoung (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Han, Hyoung-Kyun (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Kim, Dong-Sam (Aquaculture Division, East Sea Regional Fisheries Research Institute) ;
  • Bang, Jong-Deuk (Aquaculture Division, East Sea Regional Fisheries Research Institute)
  • 김영대 (국립수산과학원 동해수산연구소) ;
  • 송홍인 (국립수산과학원 동해수산연구소) ;
  • 홍정표 (국립수산과학원 동해수산연구소) ;
  • 전창영 (국립수산과학원 동해수산연구소) ;
  • 김수경 (국립수산과학원 동해수산연구소) ;
  • 한형균 (국립수산과학원 동해수산연구소) ;
  • 김동삼 (국립수산과학원 동해수산연구소) ;
  • 방종득 (국립수산과학원 동해수산연구소)
  • Published : 2006.10.01

Abstract

The barren ground is an abnormal phenomenon of coastal ecosystem in which seaweeds, are destroyed and mostly replaced by the coralline algae containing the calcium carbonate components. To restore the seaweed forest, We have exerted an effort in the local areas, Samchuck, Korea, where barren phenomena are profound. Two methods of seaweed forest construction developed in the present study are underwater longline and seed transplantation for the brown seaweed Costaria costata, a fast growing edible seaweed. The sizes of C. costata attached on the underwater longline were $96.7{\pm}2.2mm$ of blade length and $83.6{\pm}7.7g$ of blade weight in April. Thereafter the sizes declined from May. Similar pattern was obtained from in the transplantation method with maxima of $90.4{\pm}15.8mm$ and $70.1{\pm}31.7g$ for blade length and weight, respectively in April. It appeared totality maturation from two methods in May. This maturation time is the same like that of wild C. costata.

Keywords

References

  1. Bhattacharya, D. and L. D. Druehl, 1987. Molecular genetic analysis of variation in Costaria costata (Turner) Saunders. Hydrobiologia 151/152, 63-67 https://doi.org/10.1007/BF00046106
  2. Bhattacharya, D. and L. D. Druehl, 1989. Morphological and DNA Sequence variation on the kelp Costaria costata (Phaeophyta). Marine Biology 102, 15-23 https://doi.org/10.1007/BF00391319
  3. Breitburg. D. L., 1984. Residual effects of grazing: inhibition competitor recruitment by encrusting coralline algae. Ecology 65, 1136-1143 https://doi.org/10.2307/1938321
  4. Figueiredo, M. A., J. M. Kain and T. A. Norton, 1996. Biotic interactions in the colonization of crustose coralline algae by epiphytes. J. Exp. Mar. Biol. Ecol. 199, 303-318 https://doi.org/10.1016/0022-0981(96)00018-4
  5. Fujita, D., 1987. The report of interview to fisherman on 'Isoyake' in Taisei-cho, Hokkaido. Suisanzoshoku 35, 135-138
  6. Harrold, C. and J.P, Pears, 1987. The ecological role of echinoderms in kelp forest. In: Echinoderm Studies, Vol. 2. A.A. Balkema, Rotterdam, Netherlands, pp. 1-320
  7. Hatcher, B. G. and A. W. D. Larkum, 1983. An experimental analysis of factors controlling the standing crop of the epilithic algal community on a coral reef. J. Exp. Mar. Biol. Ecol. 69, 61-84 https://doi.org/10.1016/0022-0981(83)90172-7
  8. Hay, M. E., 1981. Herbivory, algal distribution, and the maintenance of between-habitat diversity on a tropical fringing reef. Am. Nat. 118, 520-540 https://doi.org/10.1086/283845
  9. Hay, M. E., 1997. The ecology and evolution of seaweed- herbivore interactions on coral reefs. Coral Reefs 16, s67-s76 https://doi.org/10.1007/s003380050243
  10. Ichiro, S., 1998. Isoyake no umi wo sukuu. translated by H. S. Jung and J. H. Kim. Korea Ocean Research and Development Institute. pp. 36-37
  11. Ichiki, S., H. Misuta and H. Yamamoto, 2000. Effects of irradiance, water temperature and nutrients on the growth of sporelings of the crustose coralline alga Lithophyllum yessoense Foslie (Corallinales, Rhodophyceae). Phycol. Res. 48, 115-120 https://doi.org/10.1111/j.1440-1835.2000.tb00205.x
  12. Johansen, H. W., 1981. Coralline Algae, a First Synthesis. CRC Press, Inc., Florida, pp. 135-157
  13. Johnson, C. R. and K. H. Mann, 1986. The crustose coralline alga, Phymatolithon Foslie, inhibits the overgrowth of seaweeds without relying on herbivores. J. Exp. Mar. Biol. Ecol. 96, 127-146 https://doi.org/10.1016/0022-0981(86)90238-8
  14. Keats, D. W., Groener, A. and Chamberlain, Y. M., 1993. Cell sloughing in the littoral zone coralline alga, Spongites yendoi (Foslie) Chamberlain (Corallinales, Rhodohyta). Phycologia 32, 143-150 https://doi.org/10.2216/i0031-8884-32-2-143.1
  15. Kanada, T., 1936. On the gametophyte of some japanese species of Laminariales. Inst. Algological Res., Fac. Sci. Jokkaide Imperial Univ. 1, 237-242
  16. Keats, D. W., P. Wilton and G. Maneveldt, 1994. Ecological singnificance of deep-layer sloughing in the eulittoral zone coralline alga, Spongites yendoi (Foslie) Chamberlain (Corallinaceae, Rhodophyta) in South Africa. J. Exp. Mar. Biol. Ecol. 175, 145-154 https://doi.org/10.1016/0022-0981(94)90022-1
  17. Keats. D. W., M. A. Knight and C. M. Pueschel, 1997. Antifouling effects of epithallial shedding in three crustose coralline algae(Rhodophyta, Coralinales) on a coral reef. J. Exp. Mar. Biol. Ecol. 213, 281-293 https://doi.org/10.1016/S0022-0981(96)02771-2
  18. Kendrick. G. A., 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. J. Exp. Mar. Biol. Ecol. 147, 47-63 https://doi.org/10.1016/0022-0981(91)90036-V
  19. Kim, S. C., H. Y. Ryu, Y. J. Park and Y. S. Son, 1999, The comparative analysis of growth depending on the water depth of the cultivated Costaria costata. Bull. Nat'l. Fish. Res. Dev. Inst. Korea 56, 101-109
  20. Koh, C. H. and H. C. Shin, 1990. Growth and size distribution of some large brown algae in Ohori, east coast of Korea. Hydrobiologia 204/205, 225-231 https://doi.org/10.1007/BF00040238
  21. Laycock, R. A., 1974. The detrital food chain based on seaweeds. I. Bacteria associated with the surface of Laminaria flonds. Mar. Biol. 25, 223-231 https://doi.org/10.1007/BF00394968
  22. Lessios, H. A., 1988. Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annu. Rev. Ecol. Syst. 19, 371-393 https://doi.org/10.1146/annurev.es.19.110188.002103
  23. Masaki, T., D. Fujita and H. Akioka, 1981. Observation on the spore germination of Laminaria japonica on Lithophyllum yessoense(Rhodophyta, Corallinaceae) in culture. Bull. Fac. Fish., Hokkaido Univ. 32, 349-356
  24. Masaki, T., D. Fujita and N. T. Hagen, 1984. The surface ultrastructure and epithallium shedding of crustose coralline algae in an 'Isoyake' area of southwestern Hokkaido, Japan. Hydrobiologia 116/117. 218-223 https://doi.org/10.1007/BF00027669
  25. Morrison, D., 1988. Comparing fish and urchin grazing in shallow and deeper coral reef algal communities. Ecology 69, 1367-1382 https://doi.org/10.2307/1941634
  26. Notoya, M., 1978. Musetse Sangomo Susyu No Hasseigakuteki Kankyu. Ph. D. Thesis, Hokkaido University
  27. Ohno, M., 1993. Succession of seaweed comunities on artficial reefs in Ashizuri, Tosa Bay, Japan. Algae 8, 191-198
  28. Paine, R. T. and R. L. Vadas, 1969. The effects of grazing by sea urchins, Strongylocentrotus spp., on benthic algal population. Oceanographty 14, 710-719
  29. Sanbonsuga, Y. and Y. Hasegawa, 1967. Studies on Laminariales in Culture. 1. On the formation of zoosporangia in the thalli of Undaria pinnatifida and Costaria costata in culture. Bull. Hokkaido Reg. Fish. Lab. 31, 41-48
  30. Sanbonsuga, Y. and Y. Hasegawa, 1967. Studies on Laminariales in Culture. 1. Effect of culture conditions on the zoosporangium formation in Costaria costata (Turn.) Saunders. Bull. Hokkaido Reg. Fish. Lab. 35, 198-202
  31. Sohn, C. H., I. K. Lee and J. W. Kang, 1982. Benthic marine algae of Dolsan island in the Southn coast of Korea. Publ. Inst. Mar. Sci. NFUB 14, 37-50
  32. Suzuki, Y., T. Takabayashi, T. Kawaguchi and K. Matsunaga, 1998. Isolation of an alleloathic substance from the crustose coralline algae, Lithophyllum spp., and its effect on the brown alga, Laminaria religiosa Miyabe (Phaeophyta). J. Exp. Mar. Biol. Ecol. 225, 69-77 https://doi.org/10.1016/S0022-0981(97)00208-6
  33. Taniguchi K., K. Kurata, T. Maruzoi and M. Suzuki, 1994. Dibormomethane, a chemical inducer of larval settlement and metamorphosis of the sea urchin Strongylocentrotus nudus. Fish. Sci. 60, 795-796 https://doi.org/10.2331/suisan.60.795
  34. Terawaki, T., S. Arai and Y. Kawasaki, 1995. Methods of submarine forest formation considering local limiting factors of distribution. Fish. Engineer. 32, 145-154
  35. Toshinobu T., Y. Koji, Y. Goro, U, Masayuki and I. Kazuo, 2003. Ecology and restoration techniques for Sargassum beds in the Seto Inland Sea, Japan, Mar. Poll. Bull. 47, 198-201 https://doi.org/10.1016/S0025-326X(03)00054-7
  36. Tsutsui, I., S. Arai, T. Terawaki and M. Ohno, 1996. A morphometric comparison of Ecklonia kurome (Laminariales, Phaeophyta) from Japan. Phycol. Res. 44, 215-222 https://doi.org/10.1111/j.1440-1835.1996.tb00051.x
  37. Watanuki, A and H. Yamamoto, 1990. Settlement of seaweeds on coastal structures. Hydrobiologia 204/205, 275-280 https://doi.org/10.1007/BF00040245
  38. Yotsui, T. and N. Maesako, 1993. Restoration experiments of Eisenia bicyclis beds on barren grounds at Tsussima Islands. Suisanzoshoku 41, 67-70

Cited by

  1. Changes in Marine Algal Flora settled on the Artificial Seaweed Reefs Before and After Rocky Cleaning and the Early Succession of the Seaweeds attached to the Test Panels vol.25, pp.6, 2013, https://doi.org/10.13000/JFMSE.2013.25.6.1336
  2. Crossed Effects of Light and Temperature on the Growth and Maturation of Gametophytes in Costaria costata and Undaria pinnatifida vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0190
  3. Marine Algal Assemblages on Artifical Reefs in Jeju-do Before and After Rocky Cleaning and the Growth Pattern of Ecklonia cava with Water Depth vol.26, pp.1, 2014, https://doi.org/10.13000/JFMSE.2014.26.1.34
  4. Size determination of Ecklonia cava for successful transplantation onto artificial seaweed reef vol.28, pp.4, 2013, https://doi.org/10.4490/algae.2013.28.4.365
  5. Technology of Marine Forest Construction in the Southern East Coast and Growth Characteristics of Transplanted Algae vol.24, pp.10, 2015, https://doi.org/10.5322/JESI.2015.24.10.1285
  6. Attachment Density and Growth of Germlings of Ecklonia cava with Substrate and Zoospore Immersion Time vol.29, pp.6, 2017, https://doi.org/10.13000/JFMSE.2017.29.6.1828