DOI QR코드

DOI QR Code

항종양 면역반응 유도를 위한 수지상세포의 최적 활성화 조건

The Optimal Activation State of Dendritic Cells for the Induction of Antitumor Immunity

  • 남병혁 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 조월순 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 이기원 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 오수정 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 강은영 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 최유진 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 도은주 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 홍숙희 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 임영진 (동아대학교 의과학연구원, 임상시험연구센터) ;
  • 김기욱 (동아대학교 의과대학 신경외과학교실) ;
  • 정민호 (동아대학교 의과학연구원, 임상시험연구센터)
  • Nam, Byung-Hyouk (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Jo, Wool-Soon (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Lee, Ki-Won (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Oh, Su-Jung (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Kang, Eun-Young (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Choi, Yu-Jin (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Do, Eun-Ju (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Hong, Sook-Hee (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Lim, Young-Jin (Dong-A University Medical Science Research Center, Clinical Research Center) ;
  • Kim, Ki-Uk (Department of Neurosurgery, College of Medicine Dong-A University) ;
  • Jeong, Min-Ho (Dong-A University Medical Science Research Center, Clinical Research Center)
  • 발행 : 2006.10.01

초록

수지상세포는 종양면역에서 필수적인 강력한 CTL 반응을 개시할 수 있는 유일한 세포이다 . 특히 외인성 종양항원에 대한 CTL 반응 유도는 활성화된 수지상세포의 IL-12 분비를 통한 CD4+ helper T세포의 cross-priming을 필요로 한다. 그러나 최근에 활성화된 수지상세포는 $Th_1$ 면역반응을 유도하지만 활성화 시간이 경과함에 따라 오히려 $Th_2$반응을 유도 할 수 있다. 따라서 본 연구에서는 OVA를 종양항원 모델로 설정하여 종양특이적인 CTL 반응을 형성하기 위한 최적의 수지상세포 활성화 조건을 조사하였다. 마우스 골수세포에 서 수지상세포로의 분화는 항원제시 기능을 위한 표면분자의 발현 측면에서 볼 때 배양 6일-7일 정도가 적합하였다. 수지상세포의 IL-12 생성능은 배양 6일 이상, OVA 항원 탑재 8시간 이상의 경우에 연이은 LPS 성숙자극으로 오히려 감소하는 경향을 보였다. 즉 배양 6일의 수지상세포에 OVA 항원 탑재를 8시간 수행한 경우(8-h DC)가 in vitro에서의 IL-12생성능, ex vivo에서의 세포내 $IFN-{\gamma}$를 발현하는 CD8+ T세포의 증가 및 OVA 특이적인 세포독성효과 등에서 가장 좋은 결과를 보였다. 또한 in vivo에서 종양 치료 및 예방효과에서도 8-h DC로 면역한 경우에 가장 우수한 종양형성 억제 효과와 생존기간 연장효과를 보였다. 현재 대부분의 수지상 세포를 이용한 항종양 백신에서 항원 탑재반응을 24시간 동안 수행하고 있으나, 본 실험의 결과로 볼 때, 8시간의 in vitro 항원 탑재가 보다 효과적인 종양특이적 CTL 반응과 항종양 면역반응을 유도함을 알 수 있다. 결론적으로 본 연구를 통하여 8시간 이상의 항원접촉은 수지상세포의 기능적 활성능력을 오히려 고갈시킬 수 있음을 제시한다.

Dendritic cells (DCs) are the only antigen presenting cells (APCs) capable of initiating immune responses, which is crucial for priming the specific cytotoxic T lymphocyte (CTL) response and tumor immunity. Upon activation by DCs, CD4+ helper T cells can cross-prime CD8+ CTLs via IL-12. However, recently activated DCs were described to prime in vitro strong T helper cell type 1 $(Th_1)$ responses, whereas at later time points, they preferentially prime $Th_2$ cells. Therfore, we examined in this study the optimum kinetic state of DCs activation impacted on in vivo priming of tumor-specific CTLs by using ovalbumin (OVA) tumor antigen model. Bone-marrow-derived DCs showed an appropriate expression of surface MHC and costimulatory molecules after 6 or 7-day differentiation. The 6-day differentiated DCs pulsed with OVA antigen for 8 h (8-h DC) and followed by restimulation with LPS for 24 h maintained high interleukin (IL)-12 production potential, accompanying the decreased level in their secretion by delayed re-exposure time to LPS. Furthermore, immunization with 8-h DC induced higher intracellular $interferon(IFN)-{\gamma}+/CD8+T$ cells and elicited more powerful cytotoxicity of splenocytes to EG7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with 24-h DC. In the animal study for the evaluation of therapeutic or protective antitumor immunity, immunization with 8-h DC induced an effective antitumor immunity against tumor of EG7 cells and completely protected mice from tumor formation and prolonged survival, respectively. The most commonly used and clinically applied DC-based vaccine is based on in vitro antigen loading for 24 h. However, our data indicated that antigen stimulation over 8 h decreased antitumor immunity with functional exhaustion of DCs, and that the 8-h DC would be an optimum activation state impacted on in vivo priming of tumor-specific CTLs and subsequently lead to induction of strong antitumor immunity.

키워드

참고문헌

  1. Banchereau, J., C. Briere, J. Caux, S. Lebecque, Y. J. Liu, B. Pulendran and K. . Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767-811 https://doi.org/10.1146/annurev.immunol.18.1.767
  2. Banchereau, J., A. K. Palucka, M. Dhodapkar, S. Burkeholder, N. Taquet, A. Rolland, S. Taquet, S. Coquery, K. M. Wittkowski, N. Bhardwaj, L. Ineiro, R. M. Steinman and J. Fay. 2001. Immune and clinical responses in patients with metastatic melanoma to $CD34^+$ progenitor-derived dendritic cell vaccine. Cancer Res. 61, 6451-6458
  3. Banchereau, J. and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392, 245-252 https://doi.org/10.1038/32588
  4. Cella, M., D. Scheidegger, K. Palmer-Lehmann, P. Lane, A. Lanzavecchia and G. Alber. 1996. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin- 12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747-752 https://doi.org/10.1084/jem.184.2.747
  5. Guermonprez, P., J. Valladeau, L. Zitvogel, C. Thery and S. Amigorena. 2002. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621-667 https://doi.org/10.1146/annurev.immunol.20.100301.064828
  6. Hsieh, C. S., S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'Garra and K. M. Murphy. 1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547-549 https://doi.org/10.1126/science.8097338
  7. Iezzi, G., E. Scotet, D. Sheidegger and A. Lanzavecchia. 1999. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol. 29, 4092-4101 https://doi.org/10.1002/(SICI)1521-4141(199912)29:12<4092::AID-IMMU4092>3.0.CO;2-A
  8. Kaech, S. M. and R. Ahmed. 2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2, 415-422 https://doi.org/10.1038/87720
  9. Kaiser, A., N. Bercovici, J. P. Abastado and A. Nardin. 2003. Naive CD8+ T cell recruitment and proliferation are dependent on stage of dendritic cell maturation. Eur. J. Immunol. 33, 162-171 https://doi.org/10.1002/immu.200390019
  10. Kalinski, P., C. M. Hilkens, E. A .Wierenga and M. L. Kapsenberg. 1999. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol. Today 20, 561-567 https://doi.org/10.1016/S0167-5699(99)01547-9
  11. Kalinski, P., J. H. Schuitemaker, C. M. Hilkens, E. A. Wierenga and M. L. Kapsenberg. 1999. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-r and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J. Immunol. 162, 3231-3236
  12. Kelsall, B. L., E. Stuber, M. Neurath and W. Strober. 1996. Interleukin-12 production by dendritic cells. The role of CD40-CD40L interactions in Th1 T cell responses. Ann. N. Y. Acad. Sci. 795, 116-126 https://doi.org/10.1111/j.1749-6632.1996.tb52660.x
  13. Langenkamp, A., M. Messi, A. Lanzavecchia and F. Sallusto. 2000. Kinetics of dendritic cell activation: impact on priming of TH1. TH2 and nonpolarized T cells. Nat. Immunol. 1, 311-316 https://doi.org/10.1038/79758
  14. Liu, Y. J. 2001. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259-262 https://doi.org/10.1016/S0092-8674(01)00456-1
  15. Lutz, M. B. and G. Schuler. 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity?. Trends Immunol. 23, 445-449 https://doi.org/10.1016/S1471-4906(02)02281-0
  16. Macatonia, S. E., N. A. Hosken, M. Litton, P. Vieira, C. S. Hsieh, J. A. Culpepper, M. Wysocka, G. Trinchieri, K. M. Murphy and A. O'Garra. 1995. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071-5079
  17. Manetti, R., P. Parronchi, M. G. Giudizi, M. P. Piccinni, E. Maggi, G. Trinchieri and S. Romagnani. 1993. Natural killer cell stimulatory factor (interleukin 12 [IL-12] induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177, 1199-1204 https://doi.org/10.1084/jem.177.4.1199
  18. O'Reilly, M.S., L. Holmgren, C. Chen and J. Folkman. 1996. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2, 689-692 https://doi.org/10.1038/nm0696-689
  19. Pamer, E. and P. Cresswell. 1998. Mechanisms of MHC class I restricted antigen processing. Annu. Rev. Immunol. 16, 323-358 https://doi.org/10.1146/annurev.immunol.16.1.323
  20. Pardoll, D. M. and S. L. Topalian. 1998. The role of CD4+ T cell responses in antitumor immunity. Curr. Opin. Immunol. 10, 588-594 https://doi.org/10.1016/S0952-7915(98)80228-8
  21. Reis e S. C, G. Yap, O. Schulz, N. Rogers, M. Schito, J. liberti, S. Hieny and A. Sher. 1999. Paralysis of dendritic cell IL-12 production by microbial products prevents infection- induced immunopathology. Immunity 111, 637-647
  22. Sallusto, F., M. Cella. C. Danieli and A. Lanzavecchia. 1995. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389-400 https://doi.org/10.1084/jem.182.2.389
  23. Sallusto, F., C. R. Mackay and A. Lanzavecchia. 2000. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593- 620 https://doi.org/10.1146/annurev.immunol.18.1.593
  24. Sallusto, F., B. Palermo, D. Lenig, M. Miettinen, S. Matikainen, I. Julkunen, R. Forster, R. Burgstahler, M. Lipp and A. Lanzavecchia. 1999. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617-1625 https://doi.org/10.1002/(SICI)1521-4141(199905)29:05<1617::AID-IMMU1617>3.0.CO;2-3
  25. Schmitt, E., P. Hoehn, T. Germann and E. Rude. 1994. Differential effects of interleukin-12 on the development of naive mouse CD4+ T cells. Eur. J. Immunol. 24, 343-347 https://doi.org/10.1002/eji.1830240211
  26. Scott, P. 1993. Selective differentiation of CD4+ T helper cell subsets. Curr. Opin. Immunol. 5, 391-397 https://doi.org/10.1016/0952-7915(93)90058-Z
  27. Stoll, S., J. Delon, T. M. Brotz and R. N. German. 2002. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873-1876 https://doi.org/10.1126/science.1071065
  28. Thery, C. and S. Amigorena. 2001. The cell biology of antigen presentation in dendritic cells. Curr. Opin. Immunol. 13, 45-51 https://doi.org/10.1016/S0952-7915(00)00180-1
  29. Thurner, B., I. Haendle, C. Roder, D. Dieckmann, P. eikavoussi, H. Jonuleit, A. Be nder, C. Maczek, D. Schreiner, P. von den Driesch, E. B. Brocker, R. M. Steinman, A. Enk, E. Kampgen and G. Schuler. 1999. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190, 1669-1678 https://doi.org/10.1084/jem.190.11.1669
  30. Trinchieri, G. 1995. Interleukin-12: a proinflammatory cytokine with immuno regulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251-276 https://doi.org/10.1146/annurev.iy.13.040195.001343
  31. Van Stipdonk, M. J., E. E. Lemmens and S. P. Schoenberger. 2001. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423-429 https://doi.org/10.1038/87730
  32. Watts, C. 1997. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu. Rev. Immunol. 15, 821-850 https://doi.org/10.1146/annurev.immunol.15.1.821