DOI QR코드

DOI QR Code

Changes in Cell Wall Components, and Solubilization and Depolymerization of Pectin and Neutral Sugar Polymers during Softening of 'Tsugaru' Apples

'쓰가루'사과의 연화에 따른 세포벽성분의 변화와 펙틴 및 중성다당류의 가용화와 분해

  • Choi, Cheol (Division of Plant Biosciences, Department of Agriculture and Life Sciences, Kyungpook National Univ.) ;
  • Kang, In-Kyu (Dept. Environmental Horticulture, Sangju Netional Univ.)
  • 최철 (경북대학교 농업생명과학대학 식물생명과학부) ;
  • 강인규 (상주대학교 환경원예학과)
  • Published : 2006.08.30

Abstract

This study was carried out to investigate changes in cell wall components and solubilization and depolymerization of pectin and neutral sugar polymers during softening of 'Tsugaru' apples. Pectic polysaccharides were solubilized in different solvents, distilled-water, 0.05 M CDTA, 0.05 M $Na_2CO_3$, and 8 M KOH, from cell wall materials during fruit softening. The uronic acid contents in distilled-water fraction rapidly increased along with fruit softening at 4 weeks after ambient storage. In the change of non-cellulosic neutral sugars in the cell wall of ‘Tsugaru’ fruits, the major sugar was galactose and arabinose in distilled-water, 0.05 M CDTA and 0.05 M $Na_2CO_3$ soluble fractions, and it was glucose, galactose and xylose in 8 M KOH fraction. Especially the change of galactose contents in distilled-water fraction was increased greatly along with fruit softening. When uronic acid polymers (UAP) and carbohydrate polymers (CP) in distilled-water fraction were filtered and separated using Sepharose CL-2B column, the high molecular UAP and CP were degraded to the low molecular ones from at harvest to softening fruit. Thus, the amount of high molecular polymers were greatly decreased along with fruit softening.

'쓰가루' 사과의 연화동안에 일어나는 세포벽 성분의 변화와 펙틴 및 중성당류의 가용화와 분해 정도를 조사하였다. 과실의 연화단계별로 펙틴다당류들을 증류수, 0.05 M CDTA, 0.05 M $Na_2CO_3$, 8 M KOH를 이용하여 분획하였다. Uronic acid (UA) 함량은 과실의 연화가 진행되면서 증류수 가용성 분획에서는 저장 4주후에 급격히 증가하였다. 각 분획별 비섬유성 중성당의 종류를 보면 증류수, 0.05 M CDTA 및 0.05 M $Na_2CO_3$ 가용성분획에서의 주요 구성당은 galactose와 arabinose였으며, 8 M KOH 가용성분획에서는 glucose, galactose 및 xylose였다. 특히 증류수 가용성 분획에서 과실의 연화가 진행되면서 galactose의 함량이 증가되었다. 그리고 증류수 가용성인 물질을 Sepharose CL-2B를 이용하여 uronic acid polymers (UAP)와 carbohydrate polymers (CP)를 분획한 결과를 보면 고분자의 UAP 및 CP가 수확후 과실의 연화가 진행될수록 저분자화 되었다. 고분자 중합물의 양은 과실이 연화됨에 따라 감소하였다.

Keywords

References

  1. Bartley, I. M. 1977. A further study of ${\beta}-galactosidase$ activity in apples ripening in storage. J. Exp. Bot. 28, 943-948 https://doi.org/10.1093/jxb/28.4.943
  2. Ben-Aire R., L. Sonego and C. Frenkel. 1979. Changes in pectic substances in ripening pears. J. Amer. Soc. Hort. Sci. 104, 500-505
  3. Bitter, T. and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  4. Blakeney, A. B., P. J. Harris, R.T . Henry, and B. A. Stone. 1983. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohyd rate. Res. 113, 291-299 https://doi.org/10.1016/0008-6215(83)88244-5
  5. Brady, C. J. 1987. Fruit ripening. Ann. Rev. Plant Physiol. 38,155-178 https://doi.org/10.1146/annurev.arplant.38.1.155
  6. Chun, J. P. 1995. Changes in cell wall components during ripening and softening in apple fruits. Ph.D dissertation. Chungnam National University Graduate School, Daejon, Korea
  7. Cutillas-Iturralde A., I. Zarra, and E. P. Lorences. 1993. Metabolism of cell wall polysaccharides from persimmon fruit. Pectin solubilization during fruit ripening occurs in apparent absence of polygalacturonase activity. Physiol. Plant 89, 369-375 https://doi.org/10.1111/j.1399-3054.1993.tb00168.x
  8. Cutillas-Iturralde A., I. Zarra, C. F. Stephan, and E. P. Lorences. 1994. Implication of persimmon fruit hemicellulose metabolism in the softening process. Importance of xyloglucan endotransglycosylase. Physiol. Plant 91, 169-176 https://doi.org/10.1111/j.1399-3054.1994.tb00415.x
  9. Dubois M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colori- metric method for determination of sugars and related substances. Anal. Chem. 28, 350-356 https://doi.org/10.1021/ac60111a017
  10. Giovannoni, J. J., D. Della Penna, A. B. Bennett, and R. L. Fisher. 1989. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but no fruit softening. Plant Cell 1, 53-63 https://doi.org/10.1105/tpc.1.1.53
  11. Gross, K. C., and S. J. Wallner. 1979. Degradation of cell wall polysaccharides during tomato fruit ripening. Plant Physiol. 63, 117-120 https://doi.org/10.1104/pp.63.1.117
  12. Gross, K. C. 1984. Fractionation and partial characterization of cell walls from normal and non-ripening mutant tomato fruit. Physiol. Plant 62, 25-32 https://doi.org/10.1111/j.1399-3054.1984.tb05918.x
  13. Gross, K. C. and C. E. Sams. 1984. Changes in cell wall neutral sugar composition during fruit ripening: a species survey. Phytochem. 23, 2457-2461 https://doi.org/10.1016/S0031-9422(00)84075-3
  14. Huber, D. J. 1983. The role of cell wall hydrolases in fruit softening. Hort. Rev. 5, 169-219
  15. Kang, I. K., K. H. Chang, and J. K. Byun. 1998. Changes in activities of cell wall hydrolases during ripening and softening in persimmon fruits. J. Kor. Soc. Hort. Sci. 39, 55-59
  16. Kim, J. K., K. C. Gross, and T. Solomos. 1987. Characterization of the stimulation of ethylene production by galactose in tomato (Lycopersicon esculentum Mill.) fruit. Plant Physiol. 85, 804-807 https://doi.org/10.1104/pp.85.3.804
  17. Knee, M. 1978. Properites of polygalacturonase and cell cohesion in apple fruit cortical tissue. Phytochem. 17, 1257-1260 https://doi.org/10.1016/S0031-9422(00)94567-9
  18. Redgwell, R. J., L. D. Melton, and D. J. Brasch. 1990. Cell wall changes in kiwifruit following postharvest ethylene treatment. Phytochem. 29, 399-407 https://doi.org/10.1016/0031-9422(90)85087-V
  19. Redgwell, R. J. 1991. Cell wall polysaccharides of kiwifruit (Actinidia deliciosa): effect of ripening on the structural features of cell wall materials. Carbohydrate Res. 209, 191-202 https://doi.org/10.1016/0008-6215(91)80156-H
  20. Shewfelt, A. L., V. A. payter, and J. J. Jen. 1971. Textural changes and molecular characteristics of pectin constituent in ripening peaches. J. Food Sci. 36, 573-575 https://doi.org/10.1111/j.1365-2621.1971.tb15132.x
  21. Shin, S. R. 1989. Changes in the cell wall components, enzyme activities, protein and structure of persimmon fruit (Diospyros kaki L.) during softening. Ph.D dissertation. Yeungnam University Graduate School, Daegu, Korea
  22. Smith, C. J. S., C. F. Watson, J. Ray, C. R. Bird, P. C. Morris, W. Schuch, and D. Grierson. 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334, 724-726 https://doi.org/10.1038/334724a0
  23. Tucker, G. A. and D. Grierson. 1987. Fruit ripining. pp. 265-318. In: D.D. Davies(ed.). The biochemistry of plants -A comprehensive treatise-. Vol. 12, Academic Press
  24. Yamaki, S., Y. Machida, and N. Kakiuchi. 1979. Changes in cell wall polysaccharides and monosaccharides during development and ripening of Japanese pear fruit. Plant Cell Physiol. 20, 311-321 https://doi.org/10.1093/oxfordjournals.pcp.a075815

Cited by

  1. Antioxidant Activity and Properties Characteristics of Pound Cakes Prepare using Job's Tears(Coix lachryma-jobi L.) Chungkukjang Powder and Wheat Bran Powder vol.24, pp.3, 2011, https://doi.org/10.9799/ksfan.2011.24.3.350