DOI QR코드

DOI QR Code

옥수수 성 결정에 있어서 세포주기 유전자들의 시간적, 공간적 조절

Temporal and Spatial Regulation of Cell Cycle Genes during Maize Sex Determination

  • 이중로 (경상대학교 환경생명과학 국가핵심 연구센터) ;
  • 김종철 (경상대학교 환경생명과학 국가핵심 연구센터)
  • Lee, Jung-Ro (Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Jong-Cheol (Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • 발행 : 2006.08.30

초록

옥수수 (Zea mays L.) 꽃은 암술 세포사멸과 수술 세포 성장정지 등을 통하여 양성상태에서 단성 상태로 성결정 과정을 완성한다. 본 논문에서는 옥수수 성 결정 동안 세포주기 유전자들의 시간적, 공간적 발현조절을 조사하였다. 세포주기의 양성조절 인자 즉 cyclin A, cyclin B, cyclin dependent kinase A (CDK A), Mad2 유전자들은 성장하는 암술과 수술에서 높게 발현되는 반면 죽어가는 암술과 성장이 정지되는 수술에서는 이들의 발현이 사라졌다. 이와 반대로, Wee1과 CDK inhibitor (CKI) 같은 세포주기 음성 조절유전자들은 야생형 암꽃과 tasselseed2 돌연변이 수꽃의 성장이 정지하고 있는 수술에서 발현이 증가되었지만, 흥미롭게도, 이들 유전자들은 죽어가는 암술세포에서는 발현되지 않았다. 이들 결과들을 통하여 옥수수 성 결정 과정 중에서 암술 세포사멸과 수술세포 성장정지는 세포주기조절과 밀접한 관계가 있으며, 특히 성장이 정지하는 수술과 죽어가는 암술에서의 음성 세포주기 조절 유전자들의 다른 발현양상은 이 둘의 성 결정 메커니즘이 구별 될 것이라고 사료된다.

Maize (Zea mays L.) pistil cell death and stamen cell arrest are pivotal process on the sex determination, which diverges from bisexual state of floral meristem to unisexual state in staminate or pistillate floret. We investigated the temporal and spatial distribution of cell cycle gene expression during maize sex determination. The positive regulatory genes of cell cycle, cyclin A, cyclin B, cyclin dependent kinase (CDK) and Mad2 were highly expressed in the developing pistil and stamen but the expression was disappeared in the dying pistil and arresting stamens. In contrast, the negative regulatory genes of cell cycle, Wee1 and CDK inhibitor (CKI) were expressed in the arresting stamens in the wild-type ear and tasselseed2 mutant tassel, however, these genes were not detected in dying pistil although the cyclin B gene expression was disappeared. These results suggest that both the pistil cell death and stamen cell arrest process in maize sex determination are involved in cell cycle regulation, but the different expression patterns of negative regulatory cell cycle genes in the arresting stamens and aborting pistils suggest that the two processes may have distinctive modes of action.

키워드

참고문헌

  1. Bisbis, B., Delmas, F., Joubes, J., Sicard, A., Hernould, M., Inze, D., Mouras, A., and Chevalier, C. 2006. Cyclin-dependent kinase (CDK) inhibitors regulate the CDK-cyclin complex activities in endoreduplicating cells of developing tomato fruit. J. Biol. Chem. 281, 7374-7383 https://doi.org/10.1074/jbc.M506587200
  2. Calderon-Urrea, A., and Dellaporta, S. L. 1999. Cell death and cell protection genes determine the fate of pistils in maize. Development 126, 435-441
  3. Charlesworth, D. 2002. Plant sex determination and sex chromosomes. Heredity 88, 94-101 https://doi.org/10.1038/sj.hdy.6800016
  4. Chirgwin, J. M., Przbyla, A. E., MacDonald, R. J., and Rutter, W. J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294 https://doi.org/10.1021/bi00591a005
  5. Coelho, C. M., Dante, R. A., Sabelli, P. A., Sun, Y., Dilkes, B. P., Gordon-Kamm, W. J., and Larkins, B. A. 2005. Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol. 138, 2323-2336 https://doi.org/10.1104/pp.105.063917
  6. de Jager, S. M., Maughan, S., Dewitte, W., Scofield, S., and Murray, J. A. 2005. The developmental context of cell-cycle control in plants. Semin. Cell Dev. Biol. 16, 385-396
  7. Dellaporta, S. L., and Calderon-Urrea, A. 1993. Sex determination in flowering plants. Plant Cell 5, 1241-1251 https://doi.org/10.1105/tpc.5.10.1241
  8. Dellaporta,S. L., and Calderon-Urrea, A. 1995. The sex determination process in maize. Science 266, 1501-1505 https://doi.org/10.1126/science.7985019
  9. DeLong, A., Calderon-Urrea, A., and Dellaporta, S. L. 1993. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74, 757-768 https://doi.org/10.1016/0092-8674(93)90522-R
  10. Emerson, R. A., and Emerson, S. H. 1922. Genetic interrelations of two andromonoecious types of maize, dwarf and anther ear. Genetics 7, 203-236
  11. Fobert, P. R., Coen, E. S., Murphy, G. J., and Doonan, J. H. 1994. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants. Embo J. 13, 616-624
  12. Gorbsky, G. J. 1997. Cell cycle checkpoints: arresting progress in mitosis. Bioessays 19, 193-197 https://doi.org/10.1002/bies.950190303
  13. Inze, D. 2005. Green light for the cell cycle. Embo J. 24, 657-662 https://doi.org/10.1038/sj.emboj.7600561
  14. Irish, E. E., Langdale, J. A., and Nelson, T. M. 1994. Interactions between Tasselseeds and other sex determining genes in Maize. Developmental Genetics 15, 155-171 https://doi.org/10.1002/dvg.1020150206
  15. Irish, E. E., and Nelson, T. 1989. Sex determination in monoecious and dioecious plants. Plant Cell 1, 737-744 https://doi.org/10.1105/tpc.1.8.737
  16. Jackson, D. 1992. In situ hybridization in plants, pp. 163-174, In Gurr, S. J., M. J., and McPherson, Bowles, D. J. (eds.) Plant Molecular Pathology: A Practical Approach, Oxford University Press, Oxford
  17. Kimbara, J., Endo, T. R., and Nasuda, S. 2004. Characterization of the genes encoding for MAD2 homologues in wheat. Chromosome Res. 12, 703-714 https://doi.org/10.1023/B:CHRO.0000045760.42880.8c
  18. Nurse, P., and Thuriaux, P. 1980. Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96, 627-637
  19. Phinney, B. O. 1956. Growth response of single-gene dwarf mutants in maize to gibberellic acid. Proc. Natl. Acad. Sci. 42, 185-189
  20. Phinney, B. O. 1961. Dwarfing genes in Zea mays and their relation to the Gibberellins, pp 489-501. In Klein, R. M., (ed.) Plant growth regulation, Iowa State University Press, Ames
  21. Potuschak, T., and Doerner, P. 2001. Cell cycle controls: genome-wide analysis in Arabidopsis. Curr. Opin. Plant Biol. 4, 501-506 https://doi.org/10.1016/S1369-5266(00)00207-7
  22. Russell, P., and Nurse, P. 1986. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145-153 https://doi.org/10.1016/0092-8674(86)90546-5
  23. Shah, J. V., and Cleveland, D. W. 2000. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103, 997-1000 https://doi.org/10.1016/S0092-8674(00)00202-6
  24. Sorrell, D. A., Marchbank, A., McMahon, K., Dickinson, J. R., Rogers, H. J., and Francis, D. 2002. A WEE1 homologue from Arabidopsis thaliana. Planta 215, 518-522 https://doi.org/10.1007/s00425-002-0815-4
  25. Stals, H., Casteels, P., Van Montagu, M., and Inze, D. 2000. Regulation of cyclin-dependent kinases in Arabidopsis thaliana. Plant Mol. Biol. 43, 583-593 https://doi.org/10.1023/A:1006409907831
  26. Sun, Y., Dilkes, B. P., Zhang, C., Dante, R. A., Carneiro, N. P., Lowe, K. S., Jung, R., Gordon-Kamm, W. J., and Larkins, B. A. 1999. Characterization of maize (Zea mays L.) Wee1 and its activity in developing endosperm. Proc. Natl. Acad. Sci. U S A 96, 4180-4185
  27. Veit, B., Greene, B., Lowe, B., Mathern, J., Sinha, N., Vollbrecht, E., R., W., and Hake, S. 1991. Genetic approaches to inflorescence and leaf development in maize. Development Supplement 1, 105-111
  28. Yu, H. 2006. Structural activation of Mad2 in the mitotic spindle checkpoint: the two-state Mad2 model versus the Mad2 template model. J. Cell Biol. 173, 153-157 https://doi.org/10.1083/jcb.200601172
  29. Yu, H. G., Muszynski, M. G., and Kelly Dawe, R. 1999. The maize homologue of the cell cycle checkpoint protein MAD2 reveals kinetochore substructure and contrasting mitotic and meiotic localization patterns. J. Cell Biol. 145, 425-435 https://doi.org/10.1083/jcb.145.3.425