DOI QR코드

DOI QR Code

Comparison of Genetic Diversity and Relationships of Genus Kalopanax Using ISSR Markers

ISSR을 이용한 음나무속 분류군의 유전적 다양성과 관련성 비교

  • Huh, Man-Kyu (Department Molecular Biology, Dong-eui University)
  • 허만규 (동의대학교 분자생물학과)
  • Published : 2006.08.30

Abstract

Inter simple sequence repeat (ISSR) markers were performed in order to analyse the phylogenetic relationships of four taxa of Castor-aralia (Kalopanax pictus): K. pictus, K. pictus var. magnificus, K. pictus var. maximowiczii, and thornless K. pictus. The 11 primers were produced 64 reproducible ISSR bands. Analysis of ISSR from individual plants of Korean K. pictus resulted in 41 polymorphic bands with 64.1%. When species were grouped by four taxa, within group diversity was 0.115 $(H_S)$, while among group diversity was 0.467 $(G_{ST})$ on a per locus basis. The estimated gene flow (Nm) for K. pictus var. maximowiczii and K. pictus var. magnificus were very higher than K. pictus. It is suggested that the isolation of geographical distance and reproductive isolation among K. pictus populations may have played roles in shaping the population structure of this species. In phenetic tree, ISSR markers are very effective in classifying natural populations as well as taxon levels of genus Kalopanax in Korea.

ISSR 마크로 한국내 자생하는 음나무속 4분류군(음나무, 가시없는 음나무, 털음나무, 가는잎음나무)에 대해 유전적 다양성과 계통관계를 조사하였다. 64개의 재현성 높은 ISSR 밴드가 생성되었다. 음나무속의 각 개체별 분석에서 41개 밴드(64.1%)가 다형성을 나타내었다. 네 분류군을 통합하였을 때 그룹내 다양도는 0.115였고 그룹간 다양도는 0.467이였다. 종내 유전자 흐름(Nm)의 측정결과 음나무의 Nm값은 털음나무, 가는잎음나무에 비해 낮았다. 이는 지리적 거리에 따른 생식적 격리가 이 종의 집단구조를 형성하고 있다고 판단된다. 계통도 분석에서 ISSR 마크로 속수준의 네 분류군뿐만 아니라 집단까지도 잘 분리되어 본 연구에 사용한 마크가 분류에 효과적임이 규명되었다.

Keywords

References

  1. Bowman, K. D., K. Hutcheson, E. P. Odum and L. R. Shenton. 1971. Comments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359
  2. Esselman, E., J. L. Jiangquiang, D. J. Crawford, J. L. Winduss and A. D. Wolfe. 1999. Clonal diversity in the rare Calamagrosis porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and their simple sequence repeat (ISSR) markers. Mol. Ecol. 8, 443-451 https://doi.org/10.1046/j.1365-294X.1999.00585.x
  3. Excoffier, L., P. E. Smouse and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131, 479-491
  4. Fang, D. Q. and M. L. Roose. 1997. Identification of closely related citris cultivars with inter-simple sequence markers. Theor. Appl. Genet. 95, 408-417 https://doi.org/10.1007/s001220050577
  5. Felsenstein, J. 1993. PHYLIP (Plyogeny Inference Package) ver. 3.5s. Distributed by the author. Univ. Washington, Seattle, USA. http:// evolution.genetics.washington.edu/ phylip
  6. Gallois, A., J. C. Audran and M. Burrus. 1998. Assessment of genetic relation ships and population discrimination among Fagus sylvatica L. by RAPD. Theor. Appl. Genet. 97, 211-219 https://doi.org/10.1007/s001220050887
  7. Godwin, I. D., E. A. B. Aiken and L. W. Smith. 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis 18, 1524-1528 https://doi.org/10.1002/elps.1150180906
  8. Hagen, M. J. and J. L. Hamrick. 1998. Genetic variation and population genetic structure in Trifolium pratense. J. Hered. 89, 178-181 https://doi.org/10.1093/jhered/89.2.178
  9. Jiao, S. D. 2003. Ten Lectures of the Use of Medicinals. pp. 711. Paradigm Publications, MA, USA
  10. Jung, S. D., H. W. Huh, J. H. Hong, J. S. Choi. H. S. Chun, K. H. Bang and M. K. Huh. 2003. Genetic diversity and population structure of Kalopanax pictus (Araliaceae). J. Plant Biology 46, 255-262 https://doi.org/10.1007/BF03030372
  11. Jung, S. D., J. S. Sung and M. K. Huh. 2005. The study of the root cutting propagation of Kalopanax pictus Nakai. J. Life Sci. 15, 21-26 https://doi.org/10.5352/JLS.2005.15.1.021
  12. Kim, S. H., H. G. Chung and J. S. Chang. 2004. Characteristics and breeding of a new thornless castor Aralia cultivar 'Cheongsong 2'. Plant Res. 17, 123-126
  13. King, L. M. and B. A. Schaal. 1989. Ribosomal DNA variation and distribution of Rudbeckia missouriensis. Evolution 42, 1117-1119
  14. Lee, T. B. 1979. Illustrated Flora of Korea. Hyangmoonsa
  15. Lewontin, R. C. 1972. The apportionment of human diversity. Evol. Biol. 61, 381-398
  16. McDermott, J. M. and B. A. McDonald. 1993. Gene flow in plant pathosystems. Ann. Rev. Phytopathy. 311, 353-373
  17. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 701, 3321-3323
  18. Paul, S. P., F. N. Wachira, W. Powell and R. Waugh. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 941, 255-263
  19. Qian, W., S. Ge and D. Y. Hong. 2001. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102, 440-449 https://doi.org/10.1007/s001220051665
  20. Rossetto, M., G. Jezeierski, S. D. Hopper and K. W. Dixon. 1999. Conservation genetics and clonality in two critically endangered eucalypts from the highly endemic south-western Australian flora. Biological Conservation 88, 321-331 https://doi.org/10.1016/S0006-3207(98)00119-0
  21. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 41, 406-425
  22. Tani, N., N. Tomaru, Y. Tsumura, M. Araki and K. Ohba. 1998. Genetic structure within a Japanese stone pine (Pinus pumola Regal) population on Mt. Aino-dake in Central Honshu, Japan. J. of Plant Research 111, 7-15 https://doi.org/10.1007/BF02507145
  23. Templeton, A. R., K. Shaw, E. Routman and S. K. Davies. 1990. The genetic consequences of habitat fragmentation. Ann. Mo. Bot. Gard. 771, 13-27
  24. Tsumura, Y., K. Ohba and S. H. Strauss. 1996. Diversity and inheritance of inter-simple sequence repeat polymorphisms in douglas-fir (Pseudotsuga menziesii) and sugi (Cryptonmeria japonica). Theor. Appl. Genet. 92, 40-45 https://doi.org/10.1007/BF00222949
  25. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE version 1.31, Microsoft windows-based freeware for population genetic analysis, Edmonton, Canada

Cited by

  1. Genetic diversity of Kalopanax pictus populations in Korea based on the nrDNA ITS sequence vol.39, pp.1, 2012, https://doi.org/10.5010/JPB.2012.39.1.075
  2. Discrimination of Kalopanax pictus from its varieties and other ‘Kalopanacis Cortex’ plants by multiplex polymerase chain reaction (PCR) vol.33, pp.6, 2011, https://doi.org/10.1007/s13258-011-0061-x