DOI QR코드

DOI QR Code

Klebsiella sp. DA71-1/pLYJ의 난용성 인산염 가용화 특성

Characteristics of Insoluble Phosphates Solubilizing by Klebsiella sp. DA71-1/pLYJ

  • 류아름 (동아대학교 응용생명공학부) ;
  • 이진우 (동아대학교 응용생명공학부) ;
  • 이용석 (동아대학교 응용생명공학부) ;
  • 이상철 (동아대학교 응용생명공학부) ;
  • 정수열 (동주대학 식품과학계열) ;
  • 최용락 (동아대학교 응용생명공학부)
  • Ryu, Ah-Reum (Department of Biotechnology, Faculty of Natural Resource and Life Science Dong-A University) ;
  • Lee, Jin-Woo (Department of Biotechnology, Faculty of Natural Resource and Life Science Dong-A University) ;
  • Lee, Yong-Seok (Department of Biotechnology, Faculty of Natural Resource and Life Science Dong-A University) ;
  • Lee, Sang-Cheol (Department of Biotechnology, Faculty of Natural Resource and Life Science Dong-A University) ;
  • Chung, Soo-Yeol (Department of Food Science, Dongju College) ;
  • Choi, Yong-Lark (Department of Biotechnology, Faculty of Natural Resource and Life Science Dong-A University)
  • 발행 : 2006.07.31

초록

친환경형 미생물제제의 난용성 인산염 가용화능의 향상을 위하여 Staphylococcus sp. LJ2로부터 분리된 ldh gene을 Klebsiella sp. DA71-1에 도입하였고, 이를 DA71-1/pLYJ라고 명명하였다. 배지에 glucose를 3% 첨가했을 때 다른 탄소원을 첨가했을 때보다 DA71-1/pLYJ 균주의 난용성 인산염 가용화능이 월등히 우수하였다. 각기 다른 난용성 인산염 tri-calcium phosphate, hydroxyapatite, 그리고 aluminium phosphate에 대하여 그 가용화능이 DA71-1 균주보다 적게는 1.2배, 많게는 2.3배 이상 향상된 결과를 보였다. 그리고 DA71-1/pLYJ 균주는 DA71-1 균주에 비해 배양 온도에 비교적 관계없이 높은 인산가용화능을 나타낸 것이 특징적이었고, 배양초기 pH가 5.0일 때 그 능력이 가장 뛰어났다. 이러한 모든 결과들을 종합해볼 때 DA71-1/pLYJ 균주는 여러면에서 DA71-1 균주보다 난용성 인산염 가용화능이 월등히 뛰어나며 따라서 효율적이고 친환경적인 미생물제제의 개발에 큰 역할을 할 수 있는 발판을 마련했다 할 수 있다.

To develop high efficiency biofertilizer solubilizing insoluble phosphates, lactate dehydrogenase (ldh) gene was isolated from Staphylococcus sp. LJ2. Genetic constructions were carried out using the pGEM-T-easy vector and pHSG398. Recombinant DNA plasmids containing the ldh gene were transferred to Klebsiella sp. DA71-1 by electroporation. The selected transformant was named as a DA71-1/pLYJ. The insoluble phosphates solubilization activity of DA71-1/pLYJ was higher than that of DA71-1 at various culture conditions. Glucose was the best carbon source for insoluble phosphates solubilization among the used carbon sources. Maximal insoluble phosphates solubilizing was found in sucrose minimal (SM) medium containing 3% glucose. The solubilizing activity of DA71-1/pLYJ against three types of insoluble phosphates, such as tri-calcium phosphate, hydroxyapatite, aluminium phosphate, were quantitatively determined. The optimal temperature and initial pH to solubilize insoluble phosphates in the SM medium was $37^{\circ}C$ and pH 5.0, respectively.

키워드

참고문헌

  1. Asea, P. E. A., R. M. N. Kucey and J. W. B. Stewart. 1998. Inorganic phosphate solubilization by two penicillium species in solution culture and soil. Soil Biol. Biochem. 20, 459-464 https://doi.org/10.1016/0038-0717(88)90058-2
  2. Azcon, R., J. M. Barea and D. S. Hayman. 1976. Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrgizal fungi and phosphate-solubilizing bacteria. Soil Biol. Biochem. 8, 135-138 https://doi.org/10.1016/0038-0717(76)90078-X
  3. Calvin, N. M. and Hanawalt, P. C. 1988. High-efficieny transformation of bacterial cells by electroporation. J. Bacteriol. 170, 2796
  4. Dubey, S. K. and S. D. Billore. 1992. Phosphate solubilizing microorganism(PSM) as inoculant their role in augmenting crop productivity India-A review. Crop Res. Hisar. 5, 11-17
  5. Gyaneshwar, P., K. G. Naresh and L. J. Parekh. 1998. Effect of buffering on the phosphate-solubilizing ability of microorganisms. World J. Microbiol. Biotechnol. 14, 669-673 https://doi.org/10.1023/A:1008852718733
  6. Hanahan, D., J. Jessee and Bloom, F. R. 1991. Plasmid transformation of Escherichia coli and other bacteria. Meth. Enzymol. 204, 63 https://doi.org/10.1016/0076-6879(91)04006-A
  7. Illmer, P. and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol. Biochem. 24, 389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  8. Kang, S. C. and M. C. Choi. 1998. Isolation and cultural characteristics of a phosphate-solubilizing fungus, Penicillium sp. PS-113. Kor. J. Biotechnol. Bioeng. 13, 497-501
  9. Laheurte, F. and J. Berthelin. 1998. Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant Siol. 105, 11-17
  10. Lee, J. W., Y. J. Jung, S. L. Choi, J. H. Kim, J. S. Yoo, Y. G. Kim and Y. L. Choi. 2004. Effect of amino acid solution for cell growh and MPS activity of mineral phosphate microorganisms. J. Kor. Life Sci. 14, 490-495 https://doi.org/10.5352/JLS.2004.14.3.490
  11. Mishustin, E. N. and A. N. Naumova. 1962. Bacterial fertilizers, their effectiveness and mode of action. Microbiol. 31, 442-452
  12. Moghimi, A., M. E. Tate and J. M. Oades. 1978. Characterization of rhizophere products especially 2-ketogluconic acid, Soil Biol. Biochem. 10, 283 https://doi.org/10.1016/0038-0717(78)90023-8
  13. Moghimi, A. and M. E. Tate. 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 to 6.4. Soil Biol. Biochem. 10, 289 https://doi.org/10.1016/0038-0717(78)90024-X
  14. Paul, E. A. and F. E. Clark. 1989. Method in Applied Soil Microbiology and Biochemistry. pp.58-62. Academic Press, New York, USA
  15. Raj, J., D. J. Bagyaraj and A. Manjunath. 1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and $^{32}P$ uptake. Soil Biol. Biochem. 13, 105-108 https://doi.org/10.1016/0038-0717(81)90004-3
  16. Song, O. R., S. J. Lee, S. H. Kim, S. Y. Chung, I. H. Cha and Y. L. Choi. 2001. Isolation and Cultural Characteristics of a Phosphate-Solubilizing Bacterium, Aeromonas hydrophila DA57. J. Kor. Soc. Agric. Chem. Biotechnol. 44, 251-256
  17. Taha, S. M., S. A. Z. Mahmoad, A. H. EI-Damaty and A. M. A. EI-Hafeg. 1969. Activity of phosphate-dissolving bacteria in Egyptian soils. Plant and Soil. 31, 149-160 https://doi.org/10.1007/BF01373034
  18. Yadav, K. S. and K. R. Dadarwal. 1997. Phosphate solubilization and mobilization through soil microorganisms. In: Biotechnological Approaches in Soil Microorganisms for Sustainable Crop Production (Dadarwal, K. R., Ed.), pp. 293-308. Scientific Publishers
  19. Zhang, Y. Q., S. X. Ren, H. L. Li, Y. X. Wang, G. Fu, J. Yang, Z. Q. Qin, Y. G. Miao, W. Y. Wang, R. S. Chen, Y. Shen, Z. Chen, Z. H. Yuan, G. P. Zhao, D. Qu, A. Danchin and Y. M. Wen. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol. 49, 1577-1593 https://doi.org/10.1046/j.1365-2958.2003.03671.x
  20. Zou, K., D. Binkley and K. G. Doxtader. 1992. New methods for estimating gross P mineralization and mobilization rates in soil. Plant Soil. 147, 243-250 https://doi.org/10.1007/BF00029076