DOI QR코드

DOI QR Code

Characterization of Expression of UV-Inducible Gene (UV100 and UV150) in Caenorhabditis elegans

Caenorhabditis elegans에서 분리한 자외선 유도유전자 (UV100과 UV150)의 발현 및 특성에 관한 연구

  • Published : 2006.07.31

Abstract

The present study intends to characterize the DNA damage-inducible responses in Caenorhabditis elegans. To study UV-inducible responses in C. elegans, two UV-inducible cDNA clones were isolated from C. elegans by using subtration hybridization method. To investigate the expression of isolated genes, UV100 and UV150, the cellular levels of the transcript were determined by Northern blot analysis after UV-irradiation. The transcripts of isolated gene increased rapidly and reached maximum accumulation after UV-irradiation. Compared to the message levels of control, the levels of maximal increase were approximately 2 folds to UV-irradiation. These results implied that the effects of damaging agents are complex and different regulatory pathways exist for the induction of these genes. To study the function of UV100 and UV150 gene in response to UV irradiation, we carried out a RNAi experiment and investigated the UV sensivity. This result indicated that UV100 gene involved in stage-specific repair pathway or regulated by development.

본 연구는 DNA 상해유도기작을 규명하기 위하여 꼬마선충 (Caenorhabditis elegans) 으로 부터 subtraction hybridization 방법을 이용하여 자외선 유도 유전자인 UV100과 UV150을 분리하고 그 유전자 구조와 발현양상을 조사하였다. 분리한 유전자의 발현양상을 Northern hybridization 방법으로 살펴본 결과 자외선 조사 후에 최대 2배 이상의 발현 증가를 나타내었다. 이 결과 이미 밝혀진 다른 UV-inducible 유전자와 유사하게 UV100과 UV150 유전자는 자외선에 의해서만 발현이 증가됨을 알 수 있었다. 또한 분리한 유전자의 기능을 알기 위하여 RNAi 실험을 한 결과 분리한 자외선 유도유전자는 발생단계에 따라 다양한 DNA 회복기작을 나타냄을 알 수 있었다.

Keywords

References

  1. Boothmann, D. A., M. Meyers, N. Fukunaga and S. W. Lee. 1993. Isolation of X-ray-inducible transcripts from radioresistant human melanoma cells. Proc. Natl. Acid. Sci. USA. 90, 7200-7204
  2. Birkenbihl, R. P. and S. Subramani. 1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double strand break repair. Nuclei Acid Res. 20, 6605-6611 https://doi.org/10.1093/nar/20.24.6605
  3. Cho, J. H., S. H. Eom and J. Ahnn. 1999. Analysis of calsequestrin gene expression using green fluorescent protein in Caenorhabditis elegans. Mol. Cells 9, 230-234
  4. Choi, I. S. 1999. Isolation and characterization of new family genes DNA damage in yeast. Environmental Mutagens & Carcinogens 19(1), 28-33
  5. Elledge, S. J. and R. W. Davis. 1987. Identification and isolation of the gene encoding the small submit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mototic viability. Mol. Cell. Biol. 7, 2783-2793 https://doi.org/10.1128/MCB.7.8.2783
  6. Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver and C. C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 https://doi.org/10.1038/35888
  7. Hartman, P., J. Reddy and B. A. Svendsen. 1991. Does translesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos. Mutat. Res. 255, 163-173 https://doi.org/10.1016/0921-8777(91)90050-Y
  8. Harosh, I. and P. Deschavanne. 1989. The RAD3 gene is a member of the DEAH family RNA helicase-like protein. Nucleic Acids Res. 19, 6331 https://doi.org/10.1093/nar/19.22.6331
  9. Hartman, P. S. and G. A. Nelson. 1998. Processing of DNA damage in the Nematode Caenorhabditis elegans in DNA Repair in Prokaryotes and Lower Eukaryotes, Nickoloff, J. A. and Hoekstra, M. F. (eds.), Vol. I, pp. 557-576, Humana Press
  10. Jang, Y. K, Y. H. Jin, M. Kim, F. Fabre. S. H. Hong and S. D. Park. 1998. Molecular cloning of $rhp51^+$ gene in Schizosccharomyces pombe, whose amino acid sequence is highly conserved from prokarytic RecA to the mammalian Rad51 homolog. Gene 5, 130-142
  11. Layher, S. K. and J. E. Cleaver, J. E. 1997. Quantification of XPA gene expression levels in human and mouse cell lines by competitive RT-PCR. Mutat. Res. 383, 9-19 https://doi.org/10.1016/S0921-8777(96)00040-7
  12. Madura, K and S. Prakash. 1990. Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD23 increase in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Necleic Acid Res. 18, 4737-4742 https://doi.org/10.1093/nar/18.16.4737
  13. Maga, J. A., T. A. McClanahan and K. McEntee. 1986. Transcriptional regulation of DNA damage responsive (DDR) genes in different rad mutant strains of Saccharomyces cerevisiae. Mol. Gen. Genet. 205, 276-284 https://doi.org/10.1007/BF00430439
  14. McClanahan, T. and K. McEntee. 1986. DNA damage and heat shock dually regulated genes in Saccharomyces cerevisiae. Mol Cell. Biol. 6, 90-95
  15. Montelone, B. A, S. Prakash and L. Prakash. 1981. Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae : Evidence for multiple functions of the RAD6 gene. Mol. Gen. Genet. 184, 410-415 https://doi.org/10.1007/BF00352514
  16. Morrison, A., E. J. Miller and L. Prakash. 1988. Domain structure and functional analysis of the carboxyl-terminal polyacidic sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol. Cell Biol. 8, 1179-1185 https://doi.org/10.1128/MCB.8.3.1179
  17. Mustra, D. J., A. J. Warren and J. W. Hamilton. 2001. Preferential binding of human full-length XPA and the minimal DNA binding domain (XPA-MF122) with the mitomycin CDNA interstrand cross-link. Biochemistry 19, 7158-7164
  18. Perozzi, G. and S. Prakash. 1986. RAD7 gene of Saccharomyses cerevisiae: transcript, nucleotide sequence analysis and functional relationship between the RAD7 and RAD23 gene products. Mol. Cell. Biol. 6, 1497-1507 https://doi.org/10.1128/MCB.6.5.1497
  19. Phipps, J., A. Nasim and D. R. Miller. 1985. Recovery, repair, and mutagenesis in Schizosaccharomyces pombe. Adv. Genetics. 23, 1-72 https://doi.org/10.1016/S0065-2660(08)60511-8
  20. Praekelt, U. M. and P. A. 1990. HSP12, a new small heat shock gene of Saccharomyces cerevisiae : analysis of structure, regulation and function. Mol. Gen. Genet. 233, 97-106
  21. Reinke, V., H. E. Smith, J. Nance, J. Wang, C. Van Doren, R. Begley, J. E. Jones, E. B. Davis, S. Scherer, S. Ward and S. K. Kim 2000. A global profile of germline gene expression in C. elegans. Mol. Cell 6, 605-616 https://doi.org/10.1016/S1097-2765(00)00059-9
  22. Sambrook, J. and D. W. Russell. 2001. Molecular cloning. A laboratory mannual. Cold Spring Harbor
  23. Shimamoto, T., T. Tanimura, Y. Yoneda, Y. Kobayakawa, K. Sugasawa, F. Hanaoka, M. Oka, Y. Okada, K. Tanaka and K. Kohno. 1995. Expression and functional analyses of the Dxpa gene, the Drosophila homolog of the human excision repair gene XPA. J. Biol. Chem. 270, 22452-22459 https://doi.org/10.1074/jbc.270.38.22452
  24. Sijen, T., J. Fleenor, F. Simmer, K. L. Thijssen, S. Parrish, L. Timmons, R. H. Plasterk and A. Fire. 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465-476 https://doi.org/10.1016/S0092-8674(01)00576-1
  25. Sulston, J. and J. Hodgkin. 1988. Methods; in The Nematode Caenorhabditis elegans, Wood, W. B. (ed.), pp. 587-606, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  26. Vinson, R. K. and B. F. Hales. 2001. Nucleotide excision repair gene expression in the rat conceptus during organogenesis. Mutat. Res. 486, 113-123 https://doi.org/10.1016/S0921-8777(01)00087-8
  27. Weinert, T. A. and L. H. Hartwell. 1990. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 54, 6564-6572