DOI QR코드

DOI QR Code

소독제에 따른 생물막 살균효율과 생물막 미생물집단의 탄소이용능 비교

Efficiency of Different Disinfectants against Biofilm on Carbon Steel Pipe and Carbon Utilizing Ability of Biofilm

  • 이동근 (신라대학교 공과대학 제약공학과) ;
  • 이재화 (신라대학교 공과대학 제약공학과) ;
  • 이상현 (신라대학교 공과대학 제약공학과) ;
  • 하배진 (신라대학교 공과대학 제약공학과) ;
  • 하종명 (신라대학교 공과대학 제약공학과)
  • Lee, Dong-Geun (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University) ;
  • Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University) ;
  • Lee, Sang-Hyeon (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University) ;
  • Ha, Bae-Jin (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University) ;
  • Ha, Jong-Myung (Department of Pharmaceutical Engineering, College of Medical and Life Sciences, Silla University)
  • 발행 : 2006.07.31

초록

수돗물에서 생성된 탄소강관위의 생물막에 유리잔류염소와 모노클로라민을 처리하여 세균농도 변화와 그에 따른 탄소원 이용능을 조사하였다. 소독제 농도를 단계적으로 올렸을 때 종속영양세균의 농도는 모노클로라민과 유리잔류염소의 농도가 각 1.5, 1.0 mg/l까지는 대조구에 비해 감소가 없었지만 (P = 0.56, ANOVA) 모노클로라민 2.0 mg/l, 유리잔류염소 1.5 mg/l 일때 감소되었다 (P < 0.01, ANOVA). 소독제의 농도를 단계적으로 높일때 세균활성의 증가 후 감소 그리고 세균농도의 감소가 관찰되었다. 세균농도가 유사하더라도 각 탄소원에 대한 정량적, 정성적 이용도가 서로 달라 군집구조가 상이할 것으로 생각되었다.

The influence of disinfectant on bacterial concentration and carbon usage patterns by Biolog GN plates were investigated for biofilm on carbon steel pipe. Heterotrophic bacterial concentrations were not different among non-, monochloramine- (1.0, 1.5 mg/l) and free chlorine- (0.5, 1.0 mg/l) treated samples (P = 0.56, ANOVA). However treatment of 1.5 mg/l free chlorine and 2.0 mg/l monochloraime showed significantly lower densities than control (P < 0.01, ANOVA). By the stepwise increasement of disinfectant concentration, the carbon usage activities of biofilm microflora were decreased after increase without the decrease of bacterial concentration, following reduction of cell density. Carbon usage patterns were qualitatively and quantitatively different with similar bacterial concentrations. Principal component analysis suggested that type and concentration of disinfectant were main factors on the usage of carbons. Our result suggest that the differences of bacterial communities were different among the samples and the need of monochloramine for the reduction of biofilm in drinking water.

키워드

참고문헌

  1. APHA. 1995. Standard methods for the examination of water and wastewater, 19th edition. Washington, DC. 9.1-9.38
  2. AWWA. 1999. Water quality and treatment: A handbook of community water supply, 5th edition, McGrau-Hill, New York. 14.1-14.15
  3. Braun, B., U. Bockelmann, E. Grohmann and U. Szewzyk. 2005. Polyphasic characterization of the bacterial community in an urban soil profile with in situ and culture- dependent methods. Appl. Soil. Ecol. 31, 267-279 https://doi.org/10.1016/j.apsoil.2005.05.003
  4. Degens, B. P. and J. A. Harris. 1997. Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol. Biochem. 29, 1309-1320 https://doi.org/10.1016/S0038-0717(97)00076-X
  5. Gamo, M. and T. Shoji. 1999. A method of profiling microbial communities based on a most-probable-number assay that uses BIOLOG plates and multiple sole carbon sources. Appl. Environ. Microbiol. 65, 4419-4424
  6. Garland, J. L. and A. L. Millis. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl. Environ. Microbiol. 57, 2311-2359
  7. Garland, J. L. 1996. Analytical approaches to the characterisation of sample microbial communities using patterns of potential C source utilisation. Soil Biol. Biochem. 28, 213-221 https://doi.org/10.1016/0038-0717(95)00112-3
  8. Khoodoo, M. H. R., F. Sahin, M. F. Donmez and Y. J. Fakim. 2005. Molecular characterisation of Xanthomonas strains isolated from aroids in Mauritius. Syst. Appl. Microbiol. 28, 366-380 https://doi.org/10.1016/j.syapm.2004.12.006
  9. LeChevallier, M. W., C. D. Lowry and R. G. Lee. 1990. Disinfection of biofilms in a model distribution system. J. Am. Water Works Assoc. 82, 87-99
  10. Lee, D.-G. 2003. Bacterial growth on GAC (granular activated carbon) in a water purifier. Korean J. Env. Heal. 29, 133-138
  11. Lee, D.-G. 2004. Safety Investigation of tap water and biofilm by isolated bacteria. Korean J. Env. Heal. 30, 207-213
  12. Lee, D.-G. and S.-J. Kim. 2003. Bacterial species in biofilm cultivated from the end of the Seoul water distribution system. J. Appl. Microbiol. 95, 317-324 https://doi.org/10.1046/j.1365-2672.2003.01978.x
  13. Lee, D.-G., J.-H. Lee, S.-H. Lee, B.-J. Ha and J.-M. Ha. 2004. CLPP of biofilm on different pipe materials in drinking water distribution system. J. Life Sci. 14, 891-894 https://doi.org/10.5352/JLS.2004.14.6.891
  14. Lee, D.-G., C. H. Lee and S.-J. Kim. 2005. Diversity and dynamics of bacterial species in a biofilm at the end of the Seoul water distribution system. World J. Microbiol. Biotechnol. 21, 155-162 https://doi.org/10.1007/s11274-004-2890-0
  15. Lehman, R. M., F. S. Colwell and G. A. Bala. 2001. Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. Appl. Environ. Microbiol. 67, 2799-2809 https://doi.org/10.1128/AEM.67.6.2799-2809.2001
  16. Mphekgo, P., Maila, P. Randima, K. Dronen and Thomas E. Cloete. 2006. Soil microbial communities: Influence of geographic location and hydrocarbon pollutants. Soil Biol. Biochem. 38, 303-310 https://doi.org/10.1016/j.soilbio.2005.05.006
  17. Marshall, K. C. 1988. Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Can. J. Microbiol. 34, 503-506 https://doi.org/10.1139/m88-086
  18. Boivin, M.-E. Y., B. Massieux, A. M. Breure, G. D. Greve, M. Rutgers and W. Admiraal. 2006. Functional recovery of biofilm bacterial communities after copper exposure. Environ. Poll. 140, 239-246 https://doi.org/10.1016/j.envpol.2005.07.014
  19. Ridgway, H. F. and B. H. Olson. 1981. Scanning microscopic evidence for bacterial colonization of a drinking water distribution system. Appl. Environ. Microbiol. 41, 274-287
  20. Schwartz, T., S. Hoffmann and U. Obst. 1998. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 32, 2787-2797 https://doi.org/10.1016/S0043-1354(98)00026-8
  21. Smalla, K., U. Wachtemdorf, H. Heuer, W.-T. Liu and L. Forney. 1998. Analysis of Biolog GN substrate utilization patterns by microbial communities. Appl. Environ. Microbiol. 64, 1220-1225
  22. Szewzyk, U., R. Szewzyk, W. Manz and K.-H. Schleifer. 2000. Microbiological safety of drinking water. Ann. Rev. Microbiol. 54, 81-127 https://doi.org/10.1146/annurev.micro.54.1.81
  23. Viti, C. and L. Giovannetti. 2005. Characterization of cultivable heterotrophic bacterial communities in Cr-polluted and unpolluted soils using Biolog and ARDRA approaches. Appl. Soil Eco. 28, 101-112 https://doi.org/10.1016/j.apsoil.2004.07.008