References
- Aragno M, Cutrin JC, Mastrocola R, Perrelli MG, Restivo F, Poli G, Danni O, Boccuzzi G. Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int 64: 836-843, 2003 https://doi.org/10.1046/j.1523-1755.2003.00152.x
- Aragno M, Parola S, Brignardello E, Mauro A, Tamagno E, Manti R, Danni O, Boccuzzi G. Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes 49: 1924-1931, 2000 https://doi.org/10.2337/diabetes.49.11.1924
- Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res 66: 35-41, 1999 https://doi.org/10.1016/S0169-328X(99)00002-9
- Belch JJ, Bridges AB, Scott N, Chopra M. Oxygen free radicals and congestive heart failure. Br Heart J 65: 245-248, 1991 https://doi.org/10.1136/hrt.65.5.245
- Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 52: 302-310, 1978 https://doi.org/10.1016/S0076-6879(78)52032-6
- Demirbag R, Yilmaz R, Erel O, Gultekin U, Asci D, Elbasan Z. The relationship between potency of oxidative stress and severity of dilated cardiomyopathy. Can J Cardiol 21: 851-855, 2005
- Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol 28: 506- 514, 1996 https://doi.org/10.1016/0735-1097(96)00140-4
- Ebeling P, Koivisto VA. Physiological importance of dehydroepiandrosterone. Lancet 343: 1479-1481, 1994 https://doi.org/10.1016/S0140-6736(94)92587-9
- Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32(Suppl): S22-S27, 1992 https://doi.org/10.1002/ana.410320706
- Imre S, Toth F, Fachet J. Superoxide dismutase, catalase and lipid peroxidation in liver of young mice of different ages. Mech Ageing Dev 28: 297-304, 1984 https://doi.org/10.1016/0047-6374(84)90030-7
- Liang CS, Mao W, Iwai C, Fukuoka S, Stevens SY. Cardiac sympathetic neuroprotective effect of desipramine in tachycardiainduced cardiomyopathy. Am J Physiol Heart Circ Physiol 290: 995-1003. 2005 https://doi.org/10.1152/ajpheart.00569.2005
- Lushnikova EL, Nepomnyashchikh LM, Semenov DE. Alterative and plastic insufficiency of cardiomyocytes: isoproterenol-induced damage to myocardium during anthracycline cardiomyopathy. Bull Exp Biol Med 131: 589-594, 2001 https://doi.org/10.1023/A:1012323223604
- Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474, 1974 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
- Pelissier MA, Trap C, Malewiak MI, Morfin R. Antioxidant effects of dehydroepiandrosterone and 7alpha-hydroxy-dehydroepiandrosterone in the rat colon, intestine and liver. Steroids 69: 137 -144, 2004 https://doi.org/10.1016/j.steroids.2003.12.006
- Preus M, Bhargava AS, Khater AE, Gunzel P. Diagnostic value of serum creatine kinase and lactate dehydrogenase isoenzyme determinations for monitoring early cardiac damage in rats. Toxicol Lett 42: 225-233, 1988 https://doi.org/10.1016/0378-4274(88)90081-1
- Roberts P, Hubbard RW, Kerstein MD. Serum glutamic-oxaloacetic transaminase (SGOT) as a predictor of recurrent heat illness. Mil Med 152: 408-410, 1987 https://doi.org/10.1093/milmed/152.8.408
- Sinet PM, Michelson AM, Bazin A, Lejeune J, Jerome H. Increase in glutathione peroxidase activity in erythrocytes from trisomy 21 subjects. Biochem Biophys Res Commun 67: 910-915, 1975 https://doi.org/10.1016/0006-291X(75)90763-9
- Singal PK, Bello-Klein A, Farahmand F, Sandhawalia V. Oxidative stress and functional deficit in diabetic cardiomyopathy. Adv Exp Med Biol 498: 213-220, 2001
- Sushamakumari S, Jayadeep A, Kumar JS, Menon VP. Effect of carnitine on malondialdehyde, taurine and glutathione levels in heart of rats subjected to myocardial stress by isoproterenol. Indian J Exp Biol 27: 134-137, 1989
- Svec F, Porter JR. The actions of exogenous dehydroepiandrosterone in experimental animals and humans. Proc Soc Exp Biol Med 218: 174-191, 1998
- Tanaka M, Tsuchihashi Y, Katsume H, Ijichi H, Ibata Y. Comparison of cardiac lesions induced in rats by isoproterenol and by repeated stress of restraint and water immersion with special reference to etiology of cardiomyopathy. Jpn Circ J 44: 971-980, 1980 https://doi.org/10.1253/jcj.44.971
- Tunez I, Munoz MC, Montilla P. Treatment with dehydroepiandrosterone prevents oxidative stress induced by 3-nitropropionic acid in synaptosomes. Pharmacology 74: 113-118, 2005 https://doi.org/10.1159/000084169
- Wen JJ, Vyatkina G, Garg N. Oxidative damage during chagasic cardiomyopathy development: role of mitochondrial oxidant release and inefficient antioxidant defense. Free Radic Biol Med 37: 1821-1833, 2004 https://doi.org/10.1016/j.freeradbiomed.2004.08.018
- Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N. An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. An Acad Bras Cienc 77: 695-715, 2005 https://doi.org/10.1590/S0001-37652005000400009