Synthesis of Dihydropyrrole[3,4-f]quinazoline Antifolates and Their Antitumor Activity In Vitro

Dihydropyrrolo[3,4-f]quinazoline 엽산길항제의 합성 및 In Vitro 항암활성

  • Baek, Du-Jong (Department of Chemistry, College of Natural Sciences, Sangmyung University)
  • 백두종 (상명대학교 자연과학대학 화학과)
  • Published : 2006.08.31

Abstract

Classical dihydropyrrole[3,4-f]quinazoline antifolates 7,8 and 9, in which the tricyclic ring is structurally similar to the pteridine ring of $CH_2-THF(1)$, the cofactor of thymidylate synthase (TS), were synthesized, and their in vitro antitumor activity was evaluated by measuring the cell growth inhibitory activity against cancer cell lines. The target compounds were cytotoxic against CCRF-CEM, human T-cell acute lymphoblastic leukemia, with the cell growth inhibitory activity $(IC_{50})$ of $0.8{\sim}8.3\;{\mu}M$. Among the three compounds, 3-amino analog 7 was 10- and 3.5-fold more cytotoxic compared to the 3-methyl analogs 8 and 9, and its cytotoxicity was similar to that of the reference compound with the $IC_{50}$ value of $0.83\;{\mu}M$. This result was supposed as the consequence of the fact that dihydropyrroloquinazolinone ring with amino group was able to bind well in the active site of TS. In the case of 3-methyl analogs, analog 9, which has two-carbon bridge between the dihydropyrroloquinazolinone ring and benzoyl-L-glutamic acid, was 3-times more potent in cytotoxicity than analog 8 which has one-carbon bridge, and this result indicates that the distance and conformational orientation of the benzoyl-L-glutamic acid moiety with respect to the tricyclic ring may also be a crucial determinant of cell growth inhibitory activity.

Keywords

References

  1. Santi, D. V. : Perspectives on the design and biochemical pharmacology of inhibitors of thymidylate synthetase. J. Med. Chem. 23, 103 (1980) https://doi.org/10.1021/jm00176a001
  2. Berman, E. M. and Werbel, L. M. : The renewed potential for folate antagonists in contemporary cancer chemotherapy. J. Med. Chem. 34, 479 (1991) https://doi.org/10.1021/jm00106a001
  3. Myers, C. E. : The pharmacology of the fluoropyrimidines. Pharmacol. Rev. 33, 1 (1981)
  4. Gangjee, A., Elzein, E., Kothare, M. and Vasudevan, A. : Classical and nonclassical antifolates as potential antitumor, antipneumocytes and antitoxoplasma agents. Curr. Pharm. Design 2, 263 (1996)
  5. Jones, T. R., Calvert, A. H., Jackman, A. L., Brown, S. J., Jones, M. and Harrap, K. R. : A potent antitumor quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties, and therapeutic results in mice. Eur. J. Cancer 17, 11 (1981) https://doi.org/10.1016/0014-2964(81)90206-1
  6. Newell, D. R., Alison, D. L., Calvert, A. H., Harrap, K. R., Jarman, M., Jones, T. R., Manteuffel-Cymborowska, M. and O'Connor, P. : Pharmacokinetics of the thymidylate synthase inhibitor N10-propargyl-5,8-dideazafolic acid (CB3717) in the mouse. Cancer Treat. Rep. 70, 971 (1986)
  7. Marsham, P. R., Hughes, L. R., Jackman, A. L., Hayter, A. J., Oldfield, J., Wardleworth, J. M., Bishop, J. A. M., O'Connor, B. M. and Calvert, A. H. : Quinazoline antifolate thymidylate synthase inhibitors: heterocyclic benzoyl ring modifications. J. Med. Chem. 34, 1594 (1991) https://doi.org/10.1021/jm00109a011
  8. Taylor, E. C., Kuhnt, D., Shih, C., Rinzel, S. M., Grindey, G. B., Barredo, J., Jannatipour, M. and Moran, R. G. : A dideazatetrahydrofolate analogue lacking a chiral center at C6, N-[4- [2-(2-amino-3,4-dihydro-4-oxo-7H-pyrrolo[2,3-d]pyrimidine-5- yl)ethyl]benzoyl]-L-glutamic acid, is an inhibitor of thymidylate synthase. J. Med. Chem. 35, 4450 (1992) https://doi.org/10.1021/jm00101a023
  9. Pendergast, W., Dickerson, S. H., Dev, I. K., Ferone, R., Duch, D. S. and Smith, G. K. : Benzo[f]quinazoline inhibitors of thymidylate synthase: methyleneamino-linked aroylglutamate derivatives. J. Med. Chem. 37, 838 (1994) https://doi.org/10.1021/jm00032a019
  10. Bavetsias, V., Marriott, J. H., Melin, C., Kimbell, R., Matusiak, Z. S., Boyle, F. T. and Jackman, A. L. : Design and synthesis of cyclopenta[g]quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents. J. Med. Chem. 43, 1910 (2000) https://doi.org/10.1021/jm991119p
  11. Still, W. C., Kahn, M. and Mitra, A. : Rapid chromatographic technique for preparative separations with moderate resolution. J. Org. Chem. 43, 2923 (1978) https://doi.org/10.1021/jo00408a041
  12. Arndt, F. : Diazomethane. Org. Synth., Coll. Vol. II, 165 (1943)
  13. Mosmann, T. : Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55 (1983) https://doi.org/10.1016/0022-1759(83)90303-4
  14. MTT is 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
  15. Webber, S. E., Bleckman, T. M., Attard, J., Deal, J. G., Kathardekar, V., Welsh, K. M., Webber, S., Janson, C. A., Matthews, D. A., Smith, W. W., Freer, S. T., Jordan, S. R., Bacquet, R. J., Howland, E. F., Booth, C. L. J., Ward, R. W., Hermann, S. M., White, J., Morse, C. A., Hilliard, J. A. and Bartlett, C. A. : Design of thymidylate synthase inhibitors using protein crystal structures: The synthesis and biological evaluation of a novel class of 5-substituted quinazolinones. J. Med. Chem. 36, 733 (1993) https://doi.org/10.1021/jm00058a010
  16. Baek, D.-J., Kang, T.-B. and Kim, H. J. : Synthesis of nonclassical quinazolinone antifolates as thymidylate synthase inhibitors and their antitumor activity in vitro. Bull. Korean Chem. Soc. 25, 1898 (2004) https://doi.org/10.5012/bkcs.2004.25.12.1898
  17. Jones, T. R., Thornton, T. J., Flinn, A., Jackman, A. L., Newell, D. R. and Clavert, A. H. : Quinazoline antifolates inhibiting thymidylate synthase: 2-Desamino derivatives with enhanced solubility and potency. J. Med. Chem. 32, 847 (1989) https://doi.org/10.1021/jm00124a018
  18. Hughes, L. R., Jackman, A. L., Oldfield, J., Smith, R. C., Burrows, K. D., Marsham, P. R., Bishop, J. A. M., Jones, T. R., O'Connor, B. M. and Calvert, A. H. : Quinazoline antifolate thymidylate synthase inhibitors: alkyl, substituted alkyl, and aryl substituents in the C2 position. J. Med. Chem. 33, 3060 (1990) https://doi.org/10.1021/jm00173a024
  19. Finer-Moore, J. S., Santi, D. V. and Stroud, R. M. : Lessons and conclusions from dissecting the mechanism of a bisubstrate enzyme: thymidylate synthase mutagenesis, function, and structure. Biochemistry 42, 248 (2003) https://doi.org/10.1021/bi020599a
  20. Gangjee, A., Zeng, Y., McGuire, J. J. and Kisliuk, R. L. : Synthesis of classical, four-carbon bridged 5-substituted furo [2,3-d]pyrimidine and 6-substituted pyrrolo[2,3-d]pyrimidine analogues as antifolates. J. Med. Chem. 48, 5329 (2005) https://doi.org/10.1021/jm058213s