Effects of ChongMyung-Tang and ChongMyung-Tang added Moutan Cortex Hot water extract & Ultra-fine Powder on Microglia and Memory Deficit Model

총명탕(聰明湯)과 파극천총명탕(巴戟天聰明湯) 열수추출물, 초미세분말제형이 microglia 및 기억력 감퇴 병태모델에 미치는 영향

  • Lim, Jung-Hwa (Department of Oriental Neuropsychiatry, Oriental Medicine, Daejeon University) ;
  • Jung, In-Chul (Department of Oriental Neuropsychiatry, Oriental Medicine, Daejeon University) ;
  • Lee, Sang-Ryong (Department of Oriental Neuropsychiatry, Oriental Medicine, Daejeon University)
  • 임정화 (대전대학교 한의과대학 신경정신과학교실) ;
  • 정인철 (대전대학교 한의과대학 신경정신과학교실) ;
  • 이상룡 (대전대학교 한의과대학 신경정신과학교실)
  • Published : 2006.08.25

Abstract

This experiment was designed to investigate the effect of the CMT and PCMT hot water extract & ultra-fine powder on microglia and memory deficit model. The effects of the CMT and PCMT hot water extract on expression of $IL-l{\beta},\;IL-6,\;TNF-{\alpha}$, NOS-II, COX-2, IL-10, $TGF-{\beta}1$ mRNA and production of $IL-l{\beta},\;IL-6,\;TNF-{\alpha}$, NO, ROS in BV2 microglial cell line treated by lipopolysacchaide(LPS) , serum glucose, uric acid, AChE activity of the memory deficit mice induced by scopolamine , behavior of the memory deficit mice induced by scopolamine and were investigated, respectively. The CMT and PCMT hot water extract suppressed the expression of $IL-l{\beta},\;IL-6,\;TNF-{\alpha}$, NOS-11, COX-2 mRNA, production of $IL-l{\beta},\;IL-6,\;TNF-{\alpha}$, NO, ROS and increased the expression of IL-10, $TGF-{\beta}1$ mRNA in BV2 microglial cell line treated by LPS. The PCMT hot water extract & ultra-fine powder increased glucose, decreased uric acid and AChE significantly in the serum of the memory deficit mice induced by scopolamine. The CMT and PCMT hot water extract & ultra-fine powder groups showed significantly inhibitory effect on the scopolamine-induced impairment of memory in the experiment of Morris water maze. According to the above result, it is suggested that the CMT and PCMT hot water extract & ultra-fine powder might be usefully applied for prevention and treatment of dementia.

Keywords

References

  1. 민성길, 최신정신의학, 서울, 일조각, pp 189-198, 2003
  2. Bierer, L.M., Haroutunian, V., Gabriel, S., Knott, P.J., Carlin, L.S., Purohit, D.P., Perl, D., Dchmeridler, J., Kanof, P., and Davism, K.L. Neurochemical correlates of dementia severity in Alzheimer's disease: relative importance of the cholinergic deficits, Journal of Neurochemistry, 64:749-760, 1995 https://doi.org/10.1046/j.1471-4159.1995.64020749.x
  3. 조추용, 최현자 역저, 치매 예방과 케어, 서울, 창지사, p 49, 2002
  4. Cacquevel, M., Lebeurrier, N., Cheenne, S., Vivien, D. Cytokines in neuroinflammation and Alzheimer's disease, Current Drug Targets, 5(6):529-534, 2004 https://doi.org/10.2174/1389450043345308
  5. Kuhl, D.E., Koeppe, R.A., Minoshima, S., Snyder, S.E., Ficaro, E.P., Foster, N.L., Frey, K.A., Kilbourn, M.R. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer's disease, Neurology, 52(4):691-699, 1999 https://doi.org/10.1212/WNL.52.4.691
  6. Mhatre, M., Floyd, R.A., Hensley, K. Oxidative stress and neuroinflammation in Alzheimer's disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets, Journal of Alzheimers disease, 6(2):147-157, 2004 https://doi.org/10.3233/JAD-2004-6206
  7. 張介賓, 張氏景岳全書, 서울, 翰成社, pp 610-611, 1978
  8. 陳士鐸, 石室秘錄, 北京, 中國中醫藥出版社, p 125, 1991
  9. 錢鏡湖, 辨證奇問全書, 台北, 甘地出版社, pp 222-225, 233- 235, 1990
  10. 대한한방신경정신과학회, 한방신경정신과학, 서울, 집문당, pp 311-320, 2005
  11. 許 浚, 東醫寶鑑, 서울, 大星文化社, pp 55-56, 1996
  12. 李尙仁 외, 漢藥臨床應用, 서울, 成輔社, pp 151-153, 308-313, 419-420, 426-428, 1990
  13. 최병만 외, 木槿皮가 CT-105로 誘導된 Alzheimer's Disease 病態 모델에 미치는 影響, 동의신경정신과학회지, 15(2):119- 140, 2004
  14. 김명진 외, 木瓜가 CT-105로 誘導된 Alzheimer's Disease 病態 모델에 미치는 影響, 동의신경정신과학회지, 16(1):97-118, 2005
  15. 박지운 외, 聰明湯과 木槿皮聰明湯이 CT105와 $\beta$A로 유도된 Alzheimer's Disease病態 모델에 미치는 영향, 대전대학교대학원, 박사학위논문, 2004
  16. 하수영 외, 聰明湯과 山査聰明湯이 Alzheimer's Disease 病態 모델에 미치는 影響, 대전대학교대학원, 박사학위논문, 2004
  17. 김현수 외, 巴戟天이 痴呆病態모델에 미치는 영향, 동의신경정신과학회지, 14(1):45-58, 2003
  18. 최현정, 방나영 외, 한약제형 선호도에 관한 설문조사, 경희의학, 20(1):356-367, 2004
  19. Song, L.L., Du, G.J., Zhang, D.L. Study on pharmacology of ultra-fine particles compound Rehmannia, Zhongguo Zhong Yao Za Zhi, 27(6):436-439, 2002
  20. Skehan, P., Storeng, R., Scudiero, D., Monk, A., McMahon, J., Visca, D., Warren, J.T., Kennedy, S., Boyd, M.R. New colorimetric cytotoxicity assay for anticancer drug screening, Journal of the National Cancer Institute, 82(13):1107-1112, 1990 https://doi.org/10.1093/jnci/82.13.1107
  21. Hunot, S., Dugas, N., Faucheux, B., Hartmann, A., Tardieu, M., Debre, P., Agid, Y., Dugas, B., Hirsch, E.C. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells, The Journal of Neuroscience, 19(9):3440-3447, 1999 https://doi.org/10.1523/JNEUROSCI.19-09-03440.1999
  22. Trabace, L., Cassano, T., Steardo, L., Pietra, C., Villetti, G., Kendrick, K.M., Cuomo, V. Biochemical and neurobehavioral profile of CHF2819, a novel, orally active acetylcholinesterase inhibitor for Alzheimer's disease, The Journal of Pharmacology and Experimental Therapeutics, 294(1):187-194, 2000
  23. Kasa, P., Papp, H., Torok, I. Donepezil dose-dependently inhibits acetylcholinesterase activity in various areas and in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme-positive structures in the human and rat brain, Neuroscience, 101(1):89-100, 2000 https://doi.org/10.1016/S0306-4522(00)00335-3
  24. Geerts, H. Indicators of neuroprotection with galantamine, Brain Research Bulletin, 64(60):519-524, 2005 https://doi.org/10.1016/j.brainresbull.2004.11.002
  25. Spassov, A., Getova, D.P. Dimitrova, D.S. P4.025 Study of ancholinesterase drugs galanthamine and donepezil on scopolamine-induced amnesia in rats, European Neuropsychopharmacology, 14, S333, 2004
  26. 洪元植, 精校黃帝內經素問, 서울, 東洋醫學硏究院, pp 217-218, 229, 1985
  27. 朱震亨, 金櫃鉤玄, 서울, 鼎談出版社, pp 306-307, 1992
  28. 康秉秀 외, 本草學, 서울, 永林社, pp 549-550, 1992
  29. Xu, Y.H., Wang, N.S. Review and analysis of present status of the micronization of Chinese traditional medicine, Zhongguo Zhong Yao Za Zhi, 29(6):497-500, 2004
  30. Woo, M.S., et al. Selective modulation of lipopolysaccharide- stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells, Molecular Brain Research, 113(1-2):86-96, 2003 https://doi.org/10.1016/S0169-328X(03)00095-0
  31. Marcheselli, V.L., Bazan, N.G. Sustained induction of prostaglandin endoperoxide-2 by seizure in hippocampus, The Journal of biological chemistry, 271:24794-24799, 1997
  32. Pasinatti, G.M., Alsen, P.S. Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer's disease brain, Neuroscience, 87(2):319-324, 1998 https://doi.org/10.1016/S0306-4522(98)00218-8
  33. Yen, G.C., Lai, H.H. et al. Nitric oxide-scavenging and antioxidant effects of Uraria crinita root, Food Chemistry, 74:471-478, 2001 https://doi.org/10.1016/S0308-8146(01)00165-0
  34. Mates, J.M. Perez-Gomez C et al.,Antioxidant enzymes and human disease, Clinical Biochemistry, 32:595, 1999 https://doi.org/10.1016/S0009-9120(99)00075-2
  35. Messier, C. The absence of effect of glucose on memory is associated with low susceptibility to the amnestic effects of scopolamine in a strain of mice, Behavioural Brain Research, 96(1-2):47-57, 1998 https://doi.org/10.1016/S0166-4328(97)00196-4
  36. Degrell, I., Niklasson, F. Purine metabolites in the CSF in presenile and senile dementia of Alzheimer type, and in multi infarct dementia, Archives of Gerontology and Geriatrics, 7(2):173-178, 1998 https://doi.org/10.1016/0167-4943(88)90029-5