Comparison of Nelumbinis Semen Extract with Hypericum Perforatum and Fluoxetine in Animal Model of Depression

연자육의 항우울 효과 및 프로티옴 분석을 통한 기전 연구

  • Lee, Jin-Woo (Department of Physiology, College of Oriental Medicine, KyungHee University) ;
  • Hong, Moo-Chang (Department of Physiology, College of Oriental Medicine, KyungHee University) ;
  • Shin, Min-Kyu (Department of Physiology, College of Oriental Medicine, KyungHee University) ;
  • Bae, Hyun-Su (Department of Physiology, College of Oriental Medicine, KyungHee University,Purimed R&D Institute)
  • 이진우 (경희대학교 한의과대학 생리학교실) ;
  • 홍무창 (경희대학교 한의과대학 생리학교실) ;
  • 신민규 (경희대학교 한의과대학 생리학교실) ;
  • 배현수 (경희대학교 한의과대학 생리학교실,퓨리메드(주) 기업부설연구소)
  • Published : 2006.08.25

Abstract

Clinical evidence suggests that Nelumbinis Semen extracts have antidepressive properties and may offer an interesting alternative for the treatment of mood disorders. It was the aim of the present study to compare the effects of Nelumbinis Semen extracts with those of fluoxetine and hypericum perforatum extract in the rat forced swimming test (FST) and chronic mild stress (CMS), a model of depression. In the FST, p.o. administration of Nelumbinis Semen extracts (1 mg) induced a statistically significant reduction of immobility. The active behaviors in that test did not reflect decreased general activity because Nelumbinis Semen extracts failed to alter the locomotor activity of rats, measured in the open field test. Moreover Nelumbinis Semen extracts was superior to fluoxetine and hypericum perforatum extract in the incidence of sexual side-effects. These effects of Nelumbinis Semen extracts on the rat behavior is to be ascribed to increased Cytochrome c oxidase polypeptide Vla-liver, Mitogen-activated protein kinase 1 , Adenylosuccinate synthetase, and Aldehyde dehydrogenase in rat hippocampus.

Keywords

References

  1. 전국 한의과대학 병리학교실. 동의병리학. 서울, 일중사, pp 33, 118-124, 1998
  2. Katz, R.J., Roth, K.A., Carroll, B.J. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev. 5(2):247-251, 1981 https://doi.org/10.1016/0149-7634(81)90005-1
  3. Skalisz, L.L., Beijamini, V., Joca, S.L., Vital, M.A., Da Cunha, C., Andreatini, R. Evaluation of the face validity of reserpine administration as an animal model of depression--Parkinson's disease association. Prog Neuropsychopharmacol Biol Psychiatry. 26(5):879-883, 2002 https://doi.org/10.1016/S0278-5846(01)00333-5
  4. Muscat, R., Papp, M., Willner, P. Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berl). 109(4):433-438, 1992 https://doi.org/10.1007/BF02247719
  5. Forbes, N.F., Stewart, C.A., Matthews, K., Reid, I.C. Chronic mild stress and sucrose consumption: validity as a model of depression. Physiol Behav. 60(6):1481-1484, 1996 https://doi.org/10.1016/S0031-9384(96)00305-8
  6. Vega Matuszcyk, J., Larsson, K., Eriksson, E. The selective serotonin reuptake inhibitor fluoxetine reduces sexual motivation in male rats. Pharmacol Biochem Behav. 60(2):527-532, 1998 https://doi.org/10.1016/S0091-3057(98)00010-0
  7. Duncko, R., Kiss, A., Skultetyova, I., Rusnak M, Jezova D. Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology. 26(1):77-89, 2001 https://doi.org/10.1016/S0306-4530(00)00040-8
  8. 이승기, 김종우, 황의완, 김현택, 곽소영, 박은혜. 분심기음의 우울증 모델 흰주에 대한 실험적 연구. 대한한의학회지 22(3):129-140, 2001
  9. Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature. 405(6788):837-846, 2000 https://doi.org/10.1038/35015709
  10. 전국한의과대학 본초학교실. 본초학. 서울, 영림사, p 623, 624, 1992
  11. De Vry, J., Maurel, S., Schreiber, R., de Beun, R., Jentzsch, K.R. Comparison of hypericum extracts with imipramine and fluoxetine in animal models of depression and alcoholism. Eur Neuropsychopharmacol. 9(6):461-468, 1999 https://doi.org/10.1016/S0924-977X(99)00005-X
  12. 이정균. 3개정판 최신정신의학. 서울, 일조각, p 212, 716, 1994
  13. Coolidge, F.L., Segal, D.L. Evolution of personality disorder diagnosis in the Diagnostic and Statistical Manual of Mental Disorders. Clin Psychol Rev. 18(5):585-599, 1998 https://doi.org/10.1016/S0272-7358(98)00002-6
  14. Masand, P.S., Gupta, S. Long-term side effects of newer- generation antidepressants: SSRIS, venlafaxine, nefazodone, bupropion, and mirtazapine. Ann Clin Psychiatry. 14(3):175-182, 2002 https://doi.org/10.3109/10401230209147454
  15. Kent, J.M. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet. 355(9207):911-918, 2000 https://doi.org/10.1016/S0140-6736(99)11381-3
  16. Obach, R.S. Inhibition of human cytochrome P450 enzymes by constituents of St. John's Wort, an herbal preparation used in the treatment of depression. J Pharmacol Exp Ther. 294(1):88-95, 2000
  17. 金相孝. 東醫神經精神科學. 서울, 杏林出版社, pp 72-75, 258- 264, 277-284, 1980
  18. 배병철 譯. 今釋黃帝內經素問. 서울, 成輔社, pp 635-713
  19. 朱震亨. 丹溪心法附餘. 서울, 大成出版社, pp 515-518, 1982
  20. 張介賓. 景岳全書. 서울, 정담, p 385, 386, 692, 1999
  21. 葉天士. 臨證指南醫案. 서울, 정담, pp 463-473, 1998
  22. 金完熙, 崔達永. 臟腑辨證論治. 서울, 成輔社, p 307, 1996
  23. 大韓東醫生理學會編. 東醫生理學, 서울, 慶大學校出版局, p 78, 380, 381, 1993
  24. 東醫寶鑑國譯委員會編. 對譯 東醫寶鑑. 서울, 법인문화사, p 182, 183, 1999
  25. 張伯臾. 中醫內科學. 北京, 人民衛生出版社, pp 5-7, 238-246, 1988
  26. David, D.J., Bourin, M., Hascoet, M., Colombel, M.C., Baker, G.B., Jolliet, P. Comparison of antidepressant activity in 4- and 40-week-old male mice in the forced swimming test: involvement of 5-HT1A and 5-HT1B receptors in old mice. Psychopharmacology (Berl). 153(4):443-449, 2001 https://doi.org/10.1007/s002130000588
  27. Moreau, J.L., Jenck, F., Martin, J.R., Mortas, P., Haefely, W.E. Antidepressant treatment prevents chronic unpredictable mild stress-induced anhedonia as assessed by ventral tegmentum self-stimulation behavior in rats. Eur Neuropsychopharmacol. 2(1):43-49, 1992 https://doi.org/10.1016/0924-977X(92)90035-7
  28. Bielajew, C., Konkle, A.T., Merali, Z. The effects of chronic mild stress on male Sprague-Dawley and Long Evans rats: I. Biochemical and physiological analyses. Behav Brain Res. 136(2):583-592, 2002 https://doi.org/10.1016/S0166-4328(02)00222-X
  29. Marona-Lewicka, D., Nichols, D.E. The Effect of Selective Serotonin Releasing Agents in the Chronic Mild Stress Model of Depression in Rats. Stress. 2(2):91-100, 1997 https://doi.org/10.3109/10253899709014740
  30. Harro, J., Haidkind, R., Harro, M., Modiri, A.R., Gillberg, P.G., Pahkla, R., Matto, V., Oreland, L. Chronic mild unpredictable stress after noradrenergic denervation: attenuation of behavioural and biochemical effects of DSP-4 treatment. Eur Neuropsychopharmacol. 10(1):5-16, 1999 https://doi.org/10.1016/S0924-977X(99)00043-7
  31. Walsh, R.N., Cummins, R.A. The open-field test : a critical review. Psychological Bulletin. 83(3):482-504, 1976 https://doi.org/10.1037/0033-2909.83.3.482
  32. Anderson, N.G., Anderson, N.L. Twenty years of two-dimensional electrophoresis: past, present, and future. Electrophoresis 17, 443-453, 1996 https://doi.org/10.1002/elps.1150170303
  33. Klose, J. Large-gel 2D electrophoresis. Methods Mol Biol 112, 147-172, 2000
  34. Pennington, S.R., Wilkins, M.R., Hochstrasser, D.F., Dunn, M.J. Proteome analysis: From protein characterization to biological function. Trends Cell Biol 7, 168-173, 1997 https://doi.org/10.1016/S0962-8924(97)01033-7
  35. Pandey, A., Mann, M. Proteomics to study genes and genomes. Nature 405, 837-846, 2000 https://doi.org/10.1038/35015709
  36. Leimgruber, R.M., Malone, J.P., Radabaugh, M.R., Laporte, M.L., Violand, B.N., Monahan, J.B. Development of improved cell lysis, solubilization and imaging approaches for proteomic analyses. Proteomics 2, 135-144, 2002 https://doi.org/10.1002/1615-9861(200202)2:2<135::AID-PROT135>3.0.CO;2-1
  37. Saviane, C., Savtchenko, L.P., Raffaelli, G., Voronin, L.L., Cherubini, E. Frequency-dependent shift from paired-pulse facilitation to paired-pulse depression at unitary CA3-CA3 synapses in the rat hippocampus. J Physiol. 544(Pt 2):469-476, 2002 https://doi.org/10.1113/jphysiol.2002.026609
  38. Lyons, W.E., Mamounas, L.A., Ricaurte, G.A., Coppola, V., Reid, S.W., Bora, S.H., Wihler, C., Koliatsos, V.E., Tessarollo, L. Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA. 96(26):15239-15244, 1999 https://doi.org/10.1073/pnas.96.26.15239
  39. Honzatko, R.B., Fromm, H.J. Structure-function studies of adenylosuccinate synthetase from Escherichia coli. Arch Biochem Biophys. 370(1):1-8, 1999 https://doi.org/10.1006/abbi.1999.1383
  40. Koch, J.M., Kell, S., Hinze-Selch, D., Aldenhoff, J.B. Changes in CREB-phosphorylation during recovery from major depression. J Psychiatr Res. 36(6):369-375, 2002 https://doi.org/10.1016/S0022-3956(02)00056-0
  41. Zhu, Y., Wang, M., Lin, H., Li, Z., Luo, J. Identification of estrogen-responsive genes in chick liver. Cell Tissue Res. 305(3):357-363, 2001 https://doi.org/10.1007/s004410100414
  42. Hempel, J., Harper, K., Lindahl, R. Inducible (class 3) aldehyde dehydrogenase from rat hepatocellular carcinoma and 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated liver: distant relationship to the class 1 and 2 enzymes from mammalian liver cytosol/mitochondria. Biochemistry. 28(3):1160-1167, 1989 https://doi.org/10.1021/bi00429a034
  43. Laifenfeld, D., Klein, E., Ben-Shachar, D. Norepinephrine alters the expression of genes involved in neuronal sprouting and differentiation: relevance for major depression and antidepressant mechanisms. J Neurochem. 83(5):1054-1064, 2002 https://doi.org/10.1046/j.1471-4159.2002.01215.x
  44. Lubec, G., Labudova, O., Cairns, N., Berndt, P., Langen, H., Fountoulakis, M. Reduced aldehyde dehydrogenase levels in the brain of patients with Down syndrome. J Neural Transm Suppl. 57, 21-40, 1999
  45. Hsu, L.C., Chang, W.C., Hoffmann, I., Duester, G. Molecular analysis of two closely related mouse aldehyde dehydrogenase genes: identification of a role for Aldh1, but not Aldh-pb, in the biosynthesis of retinoic acid. Biochem J. 339(Pt 2):387-395, 1999 https://doi.org/10.1042/0264-6021:3390387
  46. Cooper, C.E. Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem Sci. 27(1):33-39, 2002 https://doi.org/10.1016/S0968-0004(01)02035-7
  47. Schlerf, A., Droste, M., Winter, M., Kadenbach, B. Characterization of two different genes (cDNA) for cytochrome c oxidase subunit VIa from heart and liver of the rat. EMBO J. 7(8):2387-2391, 1988
  48. Wu, J., Takeo, T., Wakui, M., Ellsworth, K., Fisher, R.S. Intracellular energy failure does not underlie hyperthermic spreading depressions in immature rat hippocampal slice. Brain Res. 987(2):240-243, 2003 https://doi.org/10.1016/S0006-8993(03)03355-9
  49. Khan, K.M., Falcone, D.J., Kraemer, R. Nerve growth factor activation of Erk-1 and Erk-2 induces matrix metalloproteinase-9 expression in vascular smooth muscle cells. J Biol Chem. 277(3):2353-2359, 2002 https://doi.org/10.1074/jbc.M108989200
  50. Cussac, D., Duqueyroix, D., Newman-Tancredi, A., Millan, M.J. Stimulation by antipsychotic agents of mitogen-activated protein kinase (MAPK) coupled to cloned, human (h)serotonin (5-HT)(1A) receptors. Psychopharmacology (Berl). 162(2):168-177, 2002 https://doi.org/10.1007/s00213-002-1043-0