Effects of Water Extracts from Chaenomeles sinensis, Polygonum cuspidatum and Boswellia carterii on LPS-Induced Nitric Oxide Production in Raw 264.7 Cell

목과(木瓜), 호장근(虎杖根) 및 유향(乳香) 추출물이 Raw 264.7 cell에서 LPS로 유도된 nitric oxide 생성에 미치는 영향

  • Lee, Tae-Jin (Department of Immunology, School of Medicine, Keimyung University) ;
  • Woo, Kyung-Jin (Department of Immunology, School of Medicine, Keimyung University) ;
  • Shu, Seong-Il (Department of Microbiology, School of Medicine, Keimyung University) ;
  • Shin, Sang-Woo (College of Oriental Medicine, Daegu Hanny University) ;
  • Kim, Sang-Chan (College of Oriental Medicine, Daegu Hanny University) ;
  • Kwon, Young-Kyu (College of Oriental Medicine, Daegu Hanny University) ;
  • Park, Jong-Wook (Department of Immunology, School of Medicine, Keimyung University) ;
  • Kwon, Taeg-Kyu (Department of Immunology, School of Medicine, Keimyung University)
  • 이태진 (계명대학교 의과대학 면역학교실) ;
  • 우경진 (계명대학교 의과대학 면역학교실) ;
  • 서성일 (계명대학교 의과대학 미생물학교실) ;
  • 신상우 (대구한의대학교 한의과대학) ;
  • 김상찬 (대구한의대학교 한의과대학) ;
  • 권영규 (대구한의대학교 한의과대학) ;
  • 박종욱 (계명대학교 의과대학 면역학교실) ;
  • 권택규 (계명대학교 의과대학 면역학교실)
  • Published : 2006.06.25

Abstract

In activated macrophage, large amounts of nitric oxide (NO) are generated by inducible nitric oxide synthase (iNOS), resulting in acute or chronic inflammatory disorders. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, water extracts from the fruit of Chaenomeles sinensis, the root of Polygonum cuspidatum and Boswellia carterii inhibited the LPS-induced NO production in a parallel dose-dependent manner. To investigate the mechanism by which those extracts inhibits NO production, we examined the expression of iNOS and COX-2 in both mRNA and protein levels. We observed a significant change in the iNOS expression between LPS alone and LPS plus those extracts-treated cells. However, water extracts from Chaenomeles sinensis, Polygonum cuspidatum and Boswellia carterii did not inhibit COX-2 expression which was induced by LPS treatment in Raw 264.7 cells. These data suggest that water extracts from Chaenomeles sinensis, Polygonum cuspidatum and Boswellia carterii can modulate anti-inflammatory immune response, which may be in part associated with the regulation of NO synthesis through the regulation of iNOS expression in mouse macrophage cells.

Keywords

References

  1. Higuchi, M., Higashi, N., Taki, H., Osawa, T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol. 144(4):1425-1431, 1990
  2. MacMicking, J., Xie, Q.W., Nathan, C. Nitric oxide and macrophage function. Annu Rev Immunol. 15:323-350, 1997 https://doi.org/10.1146/annurev.immunol.15.1.323
  3. Cetkovic-Cvrlje, M., Eizirik, D.L. TNF-alpha and IFN-gamma potentiate the deleterious effects of IL-1 beta on mouse pancreatic islets mainly viageneration of nitric oxide. Cytokine. 6(4):399-406, 1994 https://doi.org/10.1016/1043-4666(94)90064-7
  4. MacMicking, J.D., Nathan, C., Hom, G., Chartrain, N., Fletcher, D.S., Trumbauer, M., Stevens, K., Xie, Q.W., Sokol, K., Hutchinson, N. et al. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 81(4):641-650, 1995 https://doi.org/10.1016/0092-8674(95)90085-3
  5. Liu, R.H., Hotchkiss, J.H. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat Res. 339(2):73-89, 1995 https://doi.org/10.1016/0165-1110(95)90004-7
  6. Forstermann, U., Schmidt, H.H., Pollock, J.S., Sheng, H., Mitchell, J.A., Warner, T.D., Nakane, M., Murad, F. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem Pharmacol. 42(10):1849-1857, 1991 https://doi.org/10.1016/0006-2952(91)90581-O
  7. Alderton, W.K., Cooper, C.E., Knowles, R.G. Nitric oxide synthases: structure, function and inhibition. Biochem J. 357(Pt 3):593-615, 2001 https://doi.org/10.1042/0264-6021:3570593
  8. Nathan, C., Xie, Q.W. Nitric oxide synthases: roles, tolls, and controls. Cell. 78(6):915-918, 1994 https://doi.org/10.1016/0092-8674(94)90266-6
  9. Szabo, C., Mitchell, J.A., Gross, S.S., Thiemermann, C., Vane, J.R. Nifedipine inhibits the induction of nitric oxide synthase by bacterial lipopolysaccharide. J Pharmacol Exp Ther. 265(2):674-680, 1993
  10. Thiemermann, C., Szabo, C., Mitchell, J.A., Vane, J.R. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc Natl Acad Sci USA. 90(1):267-271, 1993
  11. 이동언, 이재령, 김영우, 권영규, 변성희, 신상우, 서성일, 권택규, 변준석, 김상찬. 금은화 및 금은화전초가 Raw 264.7 cell에서 LPS로 유도된 NO의 생성, iNOS, CoOX-2 및 cytokine에 미치는 영향. 동의생리병리학회지. 19(2):481-489, 2005
  12. Kawamata, H., Ochiai, H., Mantani, N., Terasawa, K. Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW264.7 cells, a murine macrophage cell line. Am J Chin Med. 28(2):217-226, 2000 https://doi.org/10.1142/S0192415X0000026X
  13. Lee, B.G., Kim, S.H., Zee, O.P., Lee, K.R., Lee, H.Y., Han, J.W., Lee, H.W. Suppression of inducible nitric oxide synthase expression in RAW 264. 7 macrophages by two beta-carboline alkaloids extracted from Melia azedarach. Eur J Pharmacol. 406(3):301-309, 2000 https://doi.org/10.1016/S0014-2999(00)00680-4
  14. Seo, W.G., Pae, H.O., Oh, G.S., Chai, K.Y., Kwon, T.O., Yun, Y.G., Kim, N.Y., Chung, H.T. Inhibitory effects of methanol extract of Cyperus rotundus rhizomes on nitric oxide and superoxide productions by murine macrophage cell line, RAW 264.7 cells. J Ethnopharmacol. 76(1):59-64, 2001 https://doi.org/10.1016/S0378-8741(01)00221-5
  15. 이영선, 한옥경, 신상우, 박종현, 권영규. 향부자 열수추출물의 Nitric oxide 생성 및 iNOS 유전자 발현에 미치는 영향. 동의생리병리학회지, 17(3):771-776, 2003
  16. 장선일, 김형진, 황기명, 배현옥, 윤용갑, 정헌택, 김윤철. 활성화된 설치류 Rae 264.7 대식세포에서 당귀에탄올 추출물의 항염증 효과. 대한한의학방제학회지. 10(2):189-197, 2002
  17. Lee, J.H., Ko, W.S., Kim, Y.H., Kang, H.S., Kim, H.D., Choi, B.T. Anti-inflammatory effect of the aqueous extract from Lonicera japonica flower is related to inhibition of NF-kappaB activation through reducing I-kappaBalpha degradation in rat liver. Int J Mol Med. 7(1):79-83, 2001
  18. Xie, Q.W., Cho, H.J., Calaycay, J., Mumford, R.A., Swiderek, K.M., Lee, T.D., Ding, A., Troso, T., Nathan, C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 256(5054):225-228, 1992 https://doi.org/10.1126/science.1373522
  19. 全國韓醫科大學 本草學敎授. 本草學. 永林社, 서울, p 272-273, 420-421, 410-411, 2003
  20. Lee, M.H., Han, Y.N. A new in vitro tissue factor inhibitory triterpene from the fruits of Chaenomeles sinensis. Planta Med. 69(4):327-331, 2003 https://doi.org/10.1055/s-2003-38884
  21. Hamauzu, Y., Yasui, H., Inno, T., Kume, C., Omanyuda, M. Phenolic profile, antioxidant property, and anti-influenza viral activity of Chinese quince (Pseudocydonia sinensis Schneid.), quince (Cydonia oblonga Mill.), and apple (Malus domestica Mill.) fruits. J Agric Food Chem. 53(4):928-934, 2005 https://doi.org/10.1021/jf0494635
  22. Li, W.G., Zhang, X.Y., Wu, Y.J., Tian, X. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Pharmacol Sin. 22(12):1117-1120, 2001
  23. Chen, L., Han, Y., Yang, F., Zhang, T. High-speed counter-current chromatography separation and purification of resveratrol and piceid from Polygonum cuspidatum. J Chromatogr A. 907(1-2):343-346, 2001 https://doi.org/10.1016/S0021-9673(00)00960-2
  24. Yang, F., Zhang, T., Ito, Y. Large-scale separation of resveratrol, anthraglycoside A and anthraglycoside B from Polygonum cuspidatum Sieb. et Zucc by high-speed counter-current chromatography. J Chromatogr A. 919(2):443-448, 2001 https://doi.org/10.1016/S0021-9673(01)00846-9
  25. Jayasuriya, H., Koonchanok, N.M., Geahlen, R.L., McLaughlin, J.L., Chang, C.J. Emodin, a protein tyrosine kinase inhibitor from Polygonum cuspidatum. J Nat Prod. 55(5):696-698, 1992 https://doi.org/10.1021/np50083a026
  26. Xiao, K., Xuan, L., Xu, Y., Bai, D., Zhong, D. Constituents from Polygonum cuspidatum. Chem Pharm Bull (Tokyo). 50(5):605-608, 2002 https://doi.org/10.1248/cpb.50.605
  27. Tsai, S.H., Lin-Shiau, S.Y., Lin, J.K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFkappaB in macrophages by resveratrol. Br J Pharmacol. 126(3):673-680, 1999 https://doi.org/10.1038/sj.bjp.0702357
  28. 노대철, 최희철, 이승용, 김영호, 노문철, 김영국, 이현선. 호장근의 쿠마린에 의한 Raw264.7 세포주의 nitric oxide 생성 저해 활성. 생약학회지. 31(3):181-188, 2001
  29. 박래길, 오광록, 이광규, 문연자, 김정훈, 우원홍, 유향추출물의 HL-60 혈액암세포에서 세포사멸 유도효과. 약학회지, 45(2):161-168, 2001
  30. Syrovets, T., Buchele, B., Krauss, C., Laumonnier, Y., Simmet, T. Acetyl-boswellic acids inhibit lipopolysaccharide-mediated TNF-alpha induction in monocytes by direct interaction with IkappaB kinases. J Immunol. 174(1):498-506, 2005
  31. Lee, A.K., Sung, S.H., Kim, Y.C., Kim, S.G. Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-alpha and COX-2 expression by sauchinone effects on I-kappaBalpha phosphorylation, C/EBP and AP-1 activation. Br J Pharmacol. 139(1):11-20, 2003 https://doi.org/10.1038/sj.bjp.0705231
  32. Xie, Q.W., Kashiwabara, Y., Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 269(7):4705-4708, 1994