Changes of water Quality During the Seed Production Period of Dark-banded Rockfish Sebastes inermis in Large Scale Tanks

대형 수조에서 볼락 종묘 생산에 따른 수질 환경의 변화

  • Oh, Sung-Yong (Marine Resources Research Department, Korea Ocean Research & Development Institute) ;
  • Noh, Choong-Hwan (Marine Resources Research Department, Korea Ocean Research & Development Institute)
  • 오승용 (한국해양연구원 해양자원연구본부) ;
  • 노충환 (한국해양연구원 해양자원연구본부)
  • Published : 2006.02.25

Abstract

An experiment was carried out to investigate changing of water quality during the seed production of dark-banded rockfish Sebastes inermis in large scale tanks. Ten broodstock of dark-banded rockfish were held in three circular tanks (diameter 6.5 m; depth 2 m; water volume 50 ton) each (stocking density $0.061kg/m^3$). During the experiment the temperature ranged from 14.2 to $16.1^{\circ}C$. The fingerlings were 134 with rotifers only during 1 to 9 days after parturition, rotifers with Artemia nauplii during 10 to 20 days after parturition, Artemia nauplii only during 21 to 35 days after parturition, Artemia nauplii with commercial diet during 36 to 80 days after parturition and commercial diet only during 81 to 85 days after parturition. Water quality (dissolved oxygen, pH, $NH_4^+-N,\;NO_2^--N,\;NO_3^--N\;and\;PO_4^{3-}-P$) in rearing tanks measured every 5 days in long term monitoring investigation or every 2 hours in diurnal monitoring investigation. In 85 days after parturition, the body weight of fish grew up to 0.88 f and specific growth rate was 8.0%/day in body weight. In long term monitoring investigation, with the increase of the amount of supplied commercial diet, the concentration of dissolved oxygen (DO) and pH decreased, but the concentration of $NH_4^+-N\;(4.5\;to\;76.3{\mu}M),\;NO_2^--N\;(0.02\;to\;0.06{\mu}M),\;NO_3^--N\;(3.0\;to\;5.9{\mu}M)$, and $PO_4^{3-}-P\;(0.41\;to\;0.59{\mu}M)$ increased. In the diurnal monitoring investigation, the concentration of $NH_4^+-N$ showed great fluctuation and ranged from 3.0 to $9.1{\mu}M$ when fed rotifers, 16.3 to $45.8{\mu}M$ when fed Artemia nauplii and 36.5 to $120.1{\mu}M$ when fed commercial diet. After daily feeding with each of feed, the amount of dissolved inorganic nitrogen (DIN) and phosphorus (P) wastage were 7.0 g and 0.7 g when fed rotifers, 24.7 g and 0.7 g when fed Artemia nauplii and 140.9 g and 2.2 g when 134 commercial diet. The amount of DIN and phosphorous wastage during 134 commercial diet was significantly higher than that of fed rotifer and Artemia nauplii (P<0.05). Results will provide valuable information far water quality management and culture of dark-banded rockfish in commercial seed production systems.

본 연구는 상업적 규모의 대형 탱크에서 볼락 종묘 생산 기간 동안 사육 시스템 내 일어나는 수질 환경 변화를 알아보았다. 3개의 원형 수조(지름 6.5 m, 높이 2 m,수량 50톤)에 볼락 친어를 10마리씩(평균 무게 363.3 g, 수용밀도 $0.061kg/m^3$) 수용하여 종묘 생산을 하였으며, 실험 기간 동안 수온은 $14.2{\sim}16.1^{\circ}C$를 유지하였다. 먹이는 출산 1일부터 9일까지 로티퍼만, 출산 10일부터 20일까지 로티퍼와 알테미아를 병행하여, 출산 21일 부터 35일까지 알테미아만, 출산 36일부터 80일까지 알테미아와 배합 사료를 병행하여 그리고 출산 81일부터 조사가 끝난 85일까지 배합사료만 공급하였다. 종묘 생산 기간 동안과 각 먹이 공급에 따른 일간 수질 변화를 조사하기 위하여 용존 산소, pH, $NH_4^+-N,\;NO_2^--N,\;NO_3^--N$, 그리고 $PO_4^{3-}-P$ 농도를 조사하였다. 볼락 치어는 85일령에 0.88 g까지 성장하였고, 체중의 일간 성장률은 8.0%일이었다. 배합 사료 공급양이 많아질수록 사육수의 평균 용존 산소$(24.4{\sim}13.0mg/L)$와 pH $(8.1{\sim}7.4)$ 농도는 감소하였고, $NH_4^+-N\;(4.5\;to\;76.3{\mu}M),\;NO_2^--N\;(0.02\;to\;0.06{\mu}M),\;NO_3^--N\;(3.0\;to\;5.9{\mu}M)$, 그리고 $PO_4^{3-}-P\;(0.41\;to\;0.59{\mu}M)$ 농도는 지속적으로 증가하였다. 일간 $NH_4^+-N$ 농도 변화가 가장 컸으며, 로티퍼의 경우 $3.0{\mu}M$에서 $9.1{\mu}M$까지, 알테미아 경우 $16.13{\mu}M$에서 $45.8{\mu}M$까지, 그리고 배합 사료 공급시에는 $36.5{\mu}M$에서 $120.1{\mu}M$까지 상승하였다. 일간 수질 변화에 따른 용존 무기 질소(로티퍼; 7.0 g/일, 알테미아; 24.7 g/일, 배합 사료; 140.9 g/일)와 인(로티퍼; 0.7 g/일, 알테미아; 0.7 g/일, 배합 사료; 2.2 g/일) 배출량은 배합 사료 공급 시기에 유의적으로 높았다(P<0.05). 이와 같은 결과는 상업적 볼락 대량 종묘 시설에서 사육 시스템 내 수질 및 사육 관리를 위한 중요한 정보를 제공할 것이다.

Keywords

References

  1. Aragao, C., L. E. C. Conceicao, M. T. Dinis and H. J. Fyhn, 2004. Amino acid pools of rotifers and Artemia under different conditions: nutritional implications for fish larvae. Aquaculture, 234, 429-445 https://doi.org/10.1016/j.aquaculture.2004.01.025
  2. Brunty, J. L., R. A. Bucklin, J. Davis, C. D. Baird and R. A. Nordstedt, 1997. The influence of feed protein intake on tilapia ammonia production. Aquacult. Eng., 16, 161-166 https://doi.org/10.1016/S0144-8609(96)01019-9
  3. Cai, Y. J. and R. C. Summerfelt, 1992. Effects of temperature and size on oxygen consumption and ammonia excretion in walleye. Aquaculture, 104, 127-138 https://doi.org/10.1016/0044-8486(92)90143-9
  4. Cai, Y. J., J. Wermerskirchen and I. R. Adelman, 1996. Ammonia excretion rate indicates dietary protein adequacy for fish. Prog. Fish-Cult., 58, 124-127 https://doi.org/10.1577/1548-8640(1996)058<0124:CAERID>2.3.CO;2
  5. Dosdat, A., F. Servais, R. Metailler, C. Huelvan and E. Desbruyeres, 1996. Comparison of nitrogen losses in five teleost fish species. Aquaculture, 141, 107-127 https://doi.org/10.1016/0044-8486(95)01209-5
  6. Handy, R. D. and M. G. Poxton, 1993. Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev. Fish Biol. Fish., 3, 205-241 https://doi.org/10.1007/BF00043929
  7. Hrubec, T. C., S. A. Smith and J. L. Robertson, 1996. Nitrate Toxicity: A Potential Problem of Recirculating System. pp. 41-48. (in) G. S. Libey and M. B. Timmons (ed.), Proceedings from the Successes and Failures in Commercial Recirculating Aquaculture Conference. July 19-21, 1996. Roanoke, Virginia
  8. Lovell, T., 1989. Nutrition and Feeding of Fish. Van Nostrand Reinhold, New York, 260 pp
  9. Oh, S. Y., C. H. Noh, K. P. Hong and J. M. Kim, 2004. Total ammonia nitrogen excretion rates and feces production rates as an index for comparing efficiency of dietary protein utilization of offsprings from selected Korean strain, cultured Japanese strain and their intraspecific hybrid strain of juvenile red sea bream, Pagrus major. Ocean & Polar Res., 26, 415-423 https://doi.org/10.4217/OPR.2004.26.3.415
  10. Person-Le Ruyet, J., R. Galland, A. Le Roux and H. Chartois, 1997. Chronic ammonia toxicity in juvenile turbot (Scophthalmus maximus). Aquaculture, 154, 155-171 https://doi.org/10.1016/S0044-8486(97)00052-5
  11. Qin, G., C. C. Liu, N. H. Richman and J. E. T. Moncur, 2005. Aquaculture wastewater treatment and reuse by wind-driven reverse osmosis membrane technology: a pilot study on Coconut Island, Hawaii. Aquacult. Eng., 32, 365-378 https://doi.org/10.1016/j.aquaeng.2004.09.002
  12. Russo, R. C. and R. V. Thurston, 1991. Toxicity of ammonia, nitrite, and nitrate to fishes. Aquacult. Water Qual., 1, 58-89
  13. Sumagaysay, N. S. and M. Lourdes San Diego, 2003. Water quality and holding capacity of intensive and semi-intensive milkfish (Chanos chanos) ponds. Aquaculture, 219, 413-429 https://doi.org/10.1016/S0044-8486(02)00576-8
  14. Thurston, R. V., R. C. Russo and G. A. Vinogradov, 1981. Ammonia toxicity of fishes: effect of pH on the toxicity of the un-ionized ammonia species. Environ. Sci. Technol., 15, 837-840 https://doi.org/10.1021/es00089a012