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Abstract

This paper describes a genetic algorithm for predicting RNA structures that contain various types of pseudoknots. Pseudoknotted
RNA structures are much more difficult to predict by computational methods than RNA secondary structures, as they are more
complex and the analysis is time-consuming. We developed an efficient genetic algorithm to predict RNA folding structures con-
taining any type of pseudoknot, as well as a novel initial population method to decrease computational complexity and increase
the accuracy of the results. We also used an interaction filter to decrease the size of the possible stem lists for long RNA
sequences. We predicted RNA structures using a number of different termination conditions and compared the validity of the re-
sults and the times required for the analyses. The algorithm proved able to predict efficiently RNA structures containing various

types of pseudoknots.

Introduction

The prediction of an RNA structure with a pseudoknot us-
ing computational methods requires much computation.
Predicting the most stable structure with minimal free energy
from an RNA sequence is an optimization problem (Lee and
Han, 2002; Lee and Han, 2003; Deiman and Pleij, 1997).
Computational methods for predicting RNA structure generally
make use of two algorithms, one combinatorial the other
recursive. The combinatorial algorithm first creates an in-
ventory of all possible stem lists that can be formed by a giv-
en RNA sequence, and then determines the combination with
the lowest free energy. This algorithm has the advantage that
it can include pseudoknot structures, but the number of possi-
ble structures increases immensely with sequence length (Rivas
and Eddy, 1999; Akutsu, 2000). The recursive algorithm finds
the lowest free energy structure from the sub-fragments of a
sequence. It makes a systematic search of all sub-fragments
for the lowest free energy structure containing at least one
base pair. The first sub-fragments considered are those capable
of forming a hairpin loop closed by a single base pair. So in
a first pass it will find the lowest free energy structures for
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all pentanucleotides in the sequence. This method always finds
the structure with least free energy, but it does not identify
structures such as pseudoknots because of their computational
complexity.

A genetic algorithm (GA) is an optimization procedure that
implements the mechanism of biological evolution. It begins
with a set of solutions called populations. Solutions are then
taken and used to form a new population in the hope that the
new population will be superior to the old one. They are se-
lected to generate new solutions according to their fitness;
the fitter they are, the more opportunities they have to
reproduce. This procedure is repeated until some specified
condition is satisfied.

Genetic algorithms have been theoretically and empirically
proven to provide robust searches in highly complex and un-
certain spaces, and they are finding widespread application in
commerce, science and engineering. They are computationally
simple and powerful search methods, and many workers have
used them to predict RNA structures and sequence alignments;
they have been used to seek optimal and sub-optimal secon-
dary RNA structures (Benedetti and Morosetti, 1995; Shapiro
and Navetta, 1994) and to simulate RNA folding pathways
(Gultyaev et al., 1995; Shapiro et al., 2001).

Massively parallel genetic algorithms have been employed
to predict RNA structures that include pseudoknots (Shapiro
and Wu, 1996; Shapiro and Wu, 1997). However the struc-
tures predicted contained only H (Hairpin)-type pseudoknots
and the computations were extremely complex as they used
randomly generated initial populations. Dynamic programming
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algorithms also used to predict RNA structures including pseu-
doknots (Rivas and Eddy, 1999) again could only predict
structures with H type pseudoknots, and only from short RNA
sequences.

We have developed a GA that is able to predict efficiently
RNA structures containing several types of pseudoknots. To
predict such structures we derived an approximate energy
model for the different types of pseudoknots and developed a
topology decision algorithm. To decrease computational com-
plexity, we introduced a long interaction filter and new initial
population methods. We compare and analyze the results pre-
dicted by various initial population methods, and also adjust
the GA parameters to improve the accuracy of the predictions.

In the section that follows, we describe the GA and outline
the new initial population method and the genetic parameters.
The implementation of the analysis and the results obtained
are given in the following section. Some predicted RNA struc-
tures are presented in visual form and their accuracy assessed.
General lessons and conclusions are described in the final
section.

Prediction algorithm

The prediction algorithm for RNA structures with pseu-
doknots is composed of two stages: preprocessing, and evolu-
tion of the GA. The preprocessing steps read the RNA se-
quence and generate three stem pools. From a covariation ma-
trix they generate a list of all possible stems with a minimum
of three base pairs. They further calculate the stacking energy
of each stem in the stem lists and sort the stems in increasing
order of energy values. The list of these stems becomes what
we call the fully zipped stem pool. Since the number of possi-
ble stems increases immensely with sequence length we re-
move some irregular stems from the stem pools to decrease
their size. First, consecutive wobble pairs at either end of a
stem are removed because they are not sufficiently stable. The
stacking energy of each stem is then recalculated and irregular
stems are removed; these are stems consisting of 1 or 2 base
pairs with too distant interactions. These procedures generate
the second stem pool that we call the partially zipped stem
pool. Finally we generate the pseudoknot stem pool by finding
all possible pairs of stem that can form a typical H type
pseudoknot. At this stage, we consider only the number of
connecting loops and the length of the pseudoknot stems. The
partially zipped stem pools and pseudoknot stem pools are to-
gether used to predict RNA structures.

These procedures produce the initial populations that are al-
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lowed to evolve using the genetic operator. In using the GA
to predict RNA structures, the structures are represented as ge-
nome types using binary string genome expression.

Initial population

It is usual to generate initial population randomly when us-
ing a genetic algorithm. However this method is not efficient
for predicting RNA structures because there are many pairs of
stems that cannot coexist in a structure. These stems often
share common base pairs or have complex topology, and as a
result, randomly generated populations tend to produce impos-
sible structures. The presence of these impossible structures
makes the prediction of RNA structures inefficient. We there-
fore developed a heuristic method for generating the initial
populations. .

To generate the initial population, we first select a refer-
ence stem in the stem pools, and test the topology of the oth-
er stems in stem pools. Topology tests are composed of 2
steps: an overlapping test and crossing test. The overlapping
test examines whether the stems share base pairs with the ref-
erence stem, and the crossing test examines whether the stems
are crossed with respect to the reference stem to avoid com-
plex structures. Every stem in the stem pools is selected as
reference stem simultaneously. The complex types of pseu-
doknots and details of the topology tests are described in the
next section.

Two choices have to be made in developing the heuristic
initial population. First, as the pseudoknot stem pool is essen-
tial when predicting RNA structures containing pseudoknots,
the reference stem pool can consist of the pseudoknot stem
pool on its own or that pool together with the partially zipped
stem pools. The second choice to be made concerns how
many stems are included in an RNA structure. One approach
is to include all the stems that pass the topology test with the
reference stem; the other is to insert only a limited number of
these stems in order not to generate complex structures. The
number to include is decided in a heuristic manner by re-
peated testing.

We have compared the results obtained using the four ini-
tial population structures derived from combining these alter-
natives (Table 1). We also generated initial populations by the
random method, but the predictions obtained were not good
enough to compare with the others.



Table 1. Initial population methods

f
Method Reference stem pools Number o
stems
| Partially zipped stem pools with 1o limit
pseudoknot stem pools
) Partially zipped stem pools with fimit
pseudoknot stem pools
3 Pseudoknot stem pools only no limit
4 Pseudoknot stem pools only limit

Topology tests

Topology tests are performed to discriminate between the
types of loop elements (stems) at the evaluation stage, and to
avoid impossible or complex structures at the initial pop-
ulation stage. They are of three types. The overlapping tests
and crossing tests are carried out at the initial population stage
to avoid impossible structures, and the nesting test is per-
formed to decide on the loop types of the stems at the evalu-
ation stage. The latter test checks whether the reference stem
contains other nested stems, and is carried out when the refer-
ence stem has more than two stems. In effect, it determines
whether the topology of the reference stem corresponds to
multiple loops, or to nested internal or bulge loops. Figure la
gives an example of multiple loops and figure 1b of nested
loops.

| 11

| 2as

(a) A multiple loop

(b) A nested loop

Figure 1. Example of nested test

Genetic parameters

The performance of GA in solving optimization problems
depends on several genetic parameters. These are: the type of
genetic operator, the probability of each operator, a fitness
function, and the termination conditions.

Crossover and mutation operators are the two basic types of
operator. We use a one-point crossover operator that selects
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one crossover point at random to alter the parental chromo-
somes, and the crossover is performed with a defined cross-
over probability. The mutation operator selects bits of the ge-
nome at random and inverts them, and mutation is also per-
formed with a defined probability. The crossover operator
tends to enable the evolutionary process to move toward
promising regions of the search space, and the mutation oper-
ator is introduced to prevent premature convergence to local
optima; it does so by randomly sampling new points in the
search space. We use a high crossover probability and a low
mutation probability.

The thermodynamic free energies of RNA structures are
used to measure the fitness of individuals in the population.
To calculate free energy we use linked list data structures.
The node of the linked list is the stem index value of the
stem pools. Because the node of the linked list is sorted by
order of first index, the loop types of each stem can be easily
decided using the topology test. The appropriate energy model
is then applied to regular secondary structure elements and H
type pseudoknots.

Various types of pseudoknots can be generated during
the evolution of the algorithm. In the case of pseudoknots
composed of pseudoknot elements and secondary structure ele-
ments, thermodynamic free energy can be approximated by
current energy models (Abrahams et al., 1990). However for
some complex types this is not possible. These complex types
are defined in Figure 2, while Figure 3 displays the types of
pseudoknots whose free energy can be calculated, and Figure
4 provides an example of the free energy calculation involved.
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Figure 2. A complex pseudoknot
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The termination condition is used to determine whether a
genetic algorithm is finished. Since the execution times and
accuracy of a prediction algorithm depend on the termination
condition, its choice is very important. Either the number of
generations, Or convergence, can be used as termination
condition. Convergence refers to the similarity of the objective
scores obtained by comparing the population average score
with the score of the best individual in the population: if the
population average is within a threshold value, the GA stops
evolving. If number of generations is used as termination con-
dition, it is difficult to determine a number that is suitable for
all RNA sequences: a relatively low number of generations are
required for short RNA sequences, whereas large number is
generally required for long sequences.

Convergence may be used for all RNA sequences, but the
accuracy of prediction is poor because populations tend to
converge early. We have predicted structures using both termi-
nation conditions and have compared the results.

Results and Discussion

The prediction algorithm was implemented into a program
called PseudoFolder with C++ builder 5.0 on a 1.61 GHz
Pentium 4 PC with 256 MB memory. PseudoFolder predicts
ten structures because the variety of predictions is also
important. PseudoFolder integrates the visualization program
PseudoViewer (Han ef al, 2002; Han and Byun, 2003), so the
user can immediately see the predictions in graphical form,
and can change the prediction parameters easily using the
graphical user interface.

We have used PseudoFolder to predict several structures
that include pseudoknots from their sequences. Some of the
structures were already known. Figure 5 shows the known
structure of TMV RNA and Figure 6 shows the structure of
ORSV RNA (Einvik et al, 2000; Gultyaev et al., 1994).
These sequences have long sequence length and simple types
of pseudoknots. Simple types of pseudoknot means H type
pseudoknot and I (Internal) or B (Bulge) type pseudoknots.
Figure 7 and 8 shows the known structure of BSMVbeta RNA
and BMV3 RNA in PseudoBase (van Batenburg et al., 2000).
These RNA sequences have complex types of pseudoknots.

These known structure contain either one or two irregular
stems as well as irregular pairs that are neither Watson-Crick
pairs nor wobble pairs. As these stems could not be included
in our predictions because they were not generated during pre-
processing, we modified some bases of the test sequences in
order to find all

the stems represented in the known -
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structures.

We predicted structures five times for each sequence and
used average values for statistical analysis, and we compared
the sensitivity and execution times of the predictions. The sen-
sitivity is the proportion of the correctly predicted base pairs
(BP) of all the base pairs in the known structure. The specif-
icity indicates the proportion of the correctly predicted un-
paired bases of all the unpaired bases in the known structure.
The sensitivity and specificity were computed using the fol-
lowing equations.

Sensitivity =

TP for paired region <100
TP for paired region + FN for paired region
Specificity =

TN for paired region <100

TN for paired region+ FP for paired region

TP: True Positive, TN: True Negative
FP: False Positive, FN: False Negative
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Figure 5. The known structure of TMV RNA
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Figure 9 shows the accuracy of prediction for TMV RNA
using convergence as termination condition, and Figure 10
gives the execution times with the same termination condition.
Execution times refer to the time taken by the evolution stage.
Method in x axis means the initial population method number
in Table 1. The sensitivity of prediction was poor. For com-
parison, Figure 11 and 12 shows the results obtained with
number of generations (100) as termination condition. We
could get the best result using method 4 with the number of
generation as termination condition. The best result obtained
for TMV RNA is presented in Figure 13.

The known structure of TMV RNA has 14 stems with 4 H
type pseudoknots. In Figure 13, thirteen of the predicted stems
coincided with those of the known structure and although one
stem was different it nevertheless was similar in topology to
the known structure. We could predict all H type pseudoknot
elements correctly in known structure of TMV RNA. In
Figure 12, variation of execution times is small with number
of generation as termination condition. We were able to de-
crease execution times using methods which limit the number
of stems in initial population.

90 Sensitivity
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Figure 11. Sensitivity of prediction for TMV RNA using
generations as termination condition
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Figure 12. Execution times of predictions for TMV RNA using
number of generations as termination condition (n=100)
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The known structure of ORSYV RNA has 28 stems and 8 H
type pseudoknots with 3 nonclassical pseudoknots. The pre-
diction in Figure 14 has 18 stems that occur in the known
structure and 6 H type pseudoknots. Figure 15 shows another
prediction: its accuracy is lower than that of Figure 14, but it
includes a various types of pseudoknots. Also it has higher
accuracy for pseudoknot elements than that of Figure 14. We
could predict 6 H type pseudoknot elements and 2 non-
classical pseudoknots correctly.

Figure 13. The best prediction for TMV RNA using method 4 and
number of generations as termination condition (n=100)

Figure 16 shows the sensitivity of prediction when using
100 generations as termination condition. However, the aver-
age sensitivity of prediction was not satisfactory because
ORSV has more bases and stems than TMV RNA. We there-
fore repeated the prediction with 300 generations as termi-
nation condition, and the improved sensitivity is shown in
Figure 17. We also predicted a very similar structure using
method 4. The best prediction result for ORSV RNA in
Figure 14 was obtained using method 4 and 300 generations
as termination condition.

For BSMVbeta RNA and BMV3 RNA, we could predict
the same structure to known structure using method 1 and
convergence as termination condition. We calculated the sensi-
tivity and the specificity for the best prediction results of test
sequences. Table 2 shows the sensitivity and specificity of the
best predictions.



Figure 14. The best prediction for ORSV RNA using method 4 and

the number of generations as termination condition (n=300)

<&
I S 4
e et i3
SRAEE [P
BN -
. I~ *.
Do d
2, e
o i
PN ]
A, .
: ’ -
. B
v o
5
ey
ke
P
<%
o
s
R
55
[t
Dl
P
A s
> ’:f‘
S
B 5, Lo
Pt o Py P
B Shaa. s
P “ Cipss

Figure 15. Prediction for ORSV RNA using method 4 that includes
various types of pseudoknot
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Table 2. Accuracy of the best prediction result

RNA Sensitivity Specificity
™V 87.88 92.31
ORSV 51.47 81.63
BSMVbeta 100 100
BMV3 100 100
Sensitivity

1 2 Method 3 4

Figure 16. Sensitivity of prediction for ORSV RNA using number of
generations as termination condition (n=100)

Sensitivity

2 Method 3

4

Figure 17. Accuracy of prediction for ORSV RNA using number of
generations as termination condition (n=300)

PseudoFolder could predict RNA structures including vari-
ous types of pseudoknots and had the higher accuracy than
dynamic programming algorithm. Figure 18 and Figure 19
shows the prediction result using dynamic programming algo-
rithm (Reeder and Giegerich, 2003). Figure 18 shows the pre-
diction result for BSMVbeta RNA and Figure 19 shows the
prediction for BMV3 RNA. We know that dynamic program-
ming algorithm could predict optimal structure, but suboptimal
structures predicted by PseudoFolder were more similar to
known structures including various types of pseudoknots.
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Figure 18. Prediction result for BSMVbeta RNA using dynamic
programming algorithm
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Figure 19. Prediction result
programming algorithm

for BMV3 RNA using dynamic

For tests of long RNA sequences, we attempted to predict
the optimal structure including pseudoknots  using
PseudoFolder and a dynamic programming algorithm.
However, the dynamic programming algorithm failed to pre-
dict the optimal structure because of computational complexity
or took too much time to predict. We cannot therefore guaran-
tee that our prediction algorithm will predict the optimal struc-
ture, but it will predict pseudoknot-containing structures sim-
ilar to the known structure.

The accuracy of predictions depends on many parameters of
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the genetic algorithm including the initial population method,
the control parameter of the genetic operator, the probability
of the crossover and mutation operators, and the termination
condition. Although it is common practice to use randomly
generated initial populations with GA, such randomly gen-
erated initial populations proved to be not good enough for
RNA structure prediction because there were many stem pairs
in the stem pools that could not coexist in a structure. Figure
20 shows the number of stems which overlapped with stems
of the known TMV RNA structure. More than 30 stems in the
stem pools overlapped with the first stem at the 5' end of the
known structure. When we used randomly generated initial
populations, the prediction contained overlapping stems and
complex structures. In contrast, our initial population method
generated simple and stable structure elements capable of
evolving.

# of overlapped stems

8 8

8 3

# of overlapped sterr
88 &8 3

-
(o}

L

(=}

stems of known structure (5'=>3')

Figure 20. The number of overlapping stems in TMV RNA

Anther important parameter affecting prediction accuracy is
the termination condition, which also determined the execution
times with the prediction algorithm. For short RNA sequences
including simple pseudoknots and secondary structure ele-
ments, convergence of population can be used as termination
condition, but for long RNA sequence only number of gen-
erations is useful for prediction, and the number of gen-
erations needed increases with the length of the RNA
sequence. As a large number of generations decrease the ef-
fectiveness of prediction for short RNA sequences it is diffi-
cult to define the number of generations which satisfies accu-
racy and effectiveness for all RNA sequences.

In view of these considerations we decided to use number
of generations as default termination condition to increase the
accuracy of the predictions. For short RNA sequences, the
user can easily modify the termination condition and the ini-



tial population method using the graphical user interface. The
use of new initial population method not only improves the
accuracy of prediction but also saves execution times, and we
have been able to predict structures with similar topology to
known structures using the novel algorithm.

We are currently attempting to develop an algorithm that
will decide the optimal control parameter for the GA auto-
matically from the RNA sequence. Although the accuracy of
prediction was increased by our approach it still generates
many structural elements that differ from the known structure.
More refined energy models of the various pseudoknot ele-
ments are required to increase the accuracy of prediction. We
intend to test our prediction algorithm with many more RNA
sequences and to improve its performance. We also plan to
develop a web-based application program.
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