DOI QR코드

DOI QR Code

Chemical Modification of Nucleic Acids toward Functional Nucleic Acid Systems

  • Venkatesan, Natarajan (Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Seo, Young-Jun (Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Bang, Eun-Kyoung (Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Park, Sun-Min (Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Lee, Yoon-Suk (Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology) ;
  • Kim, Byeang-Hyean (Laboratory for Modified Nucleic Acid Systems, Department of Chemistry, Pohang University of Science and Technology)
  • Published : 2006.05.20

Abstract

Nucleic acids are virtually omnipresent; they exist in every living being. These macromolecules constitute the most important genetic storage material: the genes. Genes are conserved throughout the evolution of all living beings; they are transmitted from the parents to their offspring. Many interdisciplinary research groups are interested in modifying nucleic acids for use in a wider variety of applications. These modified oligonucleotides are used in many diverse fields, including diagnostics, detection, and therapeutics. In this account, we summarize our research efforts related to modified nucleic acid systems. First, we discuss our syntheses of modified oligonucleotides containing fluorescent tags for use as molecular probes (molecular beacons) to detect single-nucleotide polymorphisim (SNP) in nucleic acids and to distinguish between the B and Z forms of DNA. We also describe our research efforts into oligonucleotides functionalized with steroid derivatives to enhance their cell permeability, and the synthesis of several calix[4]arene-oligonucleotide conjugates possessing the ability to form defined triplexes. In addition, we have performed systematic studies to have an understanding about the functional groups necessary for a given nucleoside to behave as an organo or hydrogelator. The aggregation properties of a number of nucleoside-based phospholipids have been examined in different solvents; some of these derivatives are potential candidates for use as nucleoside-based liposomes. Finally, we also describe our research efforts toward the preparation of isoxazole- and isoxazoline-containing nucleoside derivatives and the determination of their antiviral activities.

Keywords

References

  1. Zamecnik, P. C.; Stephenson, M. L. Proc. Natl. Acad. Sci.U.S.A.1978, 75, 280
  2. Stephenson, M. L.; Zamecnik, P. C.Proc. Natl. Acad. Sci. U.S.A.1978, 75, 285
  3. Zatsepin, T.; Gait, M.; Oretskaya, T. IUBMB Life 2004, 56, 209 https://doi.org/10.1080/15216540410001710570
  4. Ghosh, P. K.; Kumar, P.; Gupta, K. C. J. Indian Chem.Soc. 2000, 77, 109
  5. Hannon, G. J. Nature 2002, 418, 244 https://doi.org/10.1038/418244a
  6. Venkatesan, N.; Kim, S. J.; Kim, B. H. Curr. Med. Chem. 2003,10, 1973 https://doi.org/10.2174/0929867033456909
  7. Kim, B. H. Nucleic Acids Symp. Ser. 2005, 13
  8. Kim, B. H. In Biomolecular Chemistry-A Bridge for the Future;Maruzen: Tokyo, 2003; pp 12-15
  9. Cuppoletti, A.; Cho, Y.; Park, J.-S.; Strässler, C.; Kool, E. T.Bioconjugate Chem. 2005, 16, 528 https://doi.org/10.1021/bc0497766
  10. Gao, J.; Strassler, C.;Tahmassebi, D. C.; Kool, E. T. J. Am. Chem. Soc. 2002, 124,11590 https://doi.org/10.1021/ja027197a
  11. Wojczewski, C.; Stozle, K.; Engeles, J. W. Synlett 1999, 1667
  12. Okamoto, A.; Tanaka, K.; Fukuta, T.; Saito, I. J. Am. Chem. Soc. 2003, 125, 9296 https://doi.org/10.1021/ja035408l
  13. Asanuma, H.; Kashida, H.;Liang, X.; Komiyama, M. Chem. Commun.2003, 1536
  14. Hwang, G. T.; Seo, Y. J.; Kim, B. H. J. Am. Chem. Soc. 2004, 126,6528 https://doi.org/10.1021/ja049795q
  15. Sonogashira, K. Metal-Catalyzed Cross-Coupling Reactions;Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998
  16. Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975,16, 4467 https://doi.org/10.1016/S0040-4039(00)91094-3
  17. Hwang, G. T.; Son, H. S.; Ku, J. K.; Kim, B. H. Org.Lett. 2001, 3, 2469 https://doi.org/10.1021/ol0162264
  18. Hwang, G. T.; Son, H. S.; Ku, J. K.; Kim,B. H. J. Am. Chem. Soc. 2003, 125, 11241 https://doi.org/10.1021/ja0349148
  19. Tani, H.; Toda, F.; Matsumiya, K. Bull. Chem. Soc. Jpn. 1963, 36,391 https://doi.org/10.1246/bcsj.36.391
  20. Gait, M. J. Oligonucleotide Synthesis: A Practical Approach; IRLPress: Washington, DC, 1984
  21. Hwang, G. T.; Seo, Y. J.; Kim, S. J.; Kim, B. H. Tetrahedron Lett. 2004, 45, 3543 https://doi.org/10.1016/j.tetlet.2004.03.071
  22. Hwang, G. T.; Seo, Y. J.; Kim, B. H. Tetrahedron Lett. 2005, 46,1475 https://doi.org/10.1016/j.tetlet.2005.01.015
  23. Seo, Y. J.; Ryu, J. H.; Kim, B. H. Org. Lett. 2005, 7, 4931 https://doi.org/10.1021/ol0518582
  24. Brookes, A. J. Gene1999, 234, 177 https://doi.org/10.1016/S0378-1119(99)00219-X
  25. Schafer, A. J.;Hawkins, J. R. Nat. Biotechnol. 1998, 16, 33
  26. McCarthy, J. J.;Hilfiker, R. Nat. Biotechnol. 2000, 18, 505 https://doi.org/10.1038/75360
  27. Nakatani, K.ChemBioChem2004, 5, 1623 https://doi.org/10.1002/cbic.200400161
  28. Seo, Y. J.; Hwang, G. T.; Kim, B. H. Nucleic Acids Symp. Ser.2005, 135
  29. Seo, Y. J.; Kim, B. H. Chem. Commun. 2006, 150
  30. Geacintov, N. E.; Zhao, R.; Kuzmin, V. A.; Kim, S. K.; Pecora,L. J. Photochem. Photobiol. 1993, 58, 185 https://doi.org/10.1111/j.1751-1097.1993.tb09547.x
  31. Manoharan, M.;Tivel, L.; Zhao, M.; Nafisi, K.; Netzel, T. L. J. Phys. Chem. 1995, 99, 17461 https://doi.org/10.1021/j100048a024
  32. Shafirovich, V. Y.; Courtney, S. H.; Ya, N.;Geacintov, N. E. J. Am. Chem. Soc. 1995, 117, 4920 https://doi.org/10.1021/ja00122a024
  33. Stetsenko, D. A.; Gait, M. J. Bioconjugate Chem. 2001, 12, 576 https://doi.org/10.1021/bc000157g
  34. Gamper, H. B.; Reed, M. W.; Cox, T.; Virosco, J. S.;Adams, A. D.; Gall, A. A.; Scholler, J. K.; Meyer, R. B. Nucleic Acids Res. 1993, 21, 145 https://doi.org/10.1093/nar/21.1.145
  35. Barnard, D. L.; Sidwell, R. W.; Xiao,W.; Player, M. R.; Adah, S. A.; Tottence, P. F. Antiviral Res. 1999, 41, 119 https://doi.org/10.1016/S0166-3542(99)00005-4
  36. Kim, S. J.; Bang, E. K.; Kwon, H. J.; Shim, J. S.; Kim, B. H.ChemBioChem 2004, 5, 1517 https://doi.org/10.1002/cbic.200400150
  37. Bang, E. K.; Kim, S. J.; Kim, B. H. Bull. Korean Chem. Soc.2004, 25, 1619 https://doi.org/10.5012/bkcs.2004.25.11.1619
  38. Kim, S. J.; Kim, B. H. Nucleosides Nucleotides Nucleic Acids 2003, 22, 2003 https://doi.org/10.1081/NCN-120026402
  39. Kim, S. J.; Bang, E. K.; Kim, B. H. Synlett 2003, 1838
  40. Cacciapaglia, R.; Casnati, A.; Mandolini, L.; Ungaro, R. J. Am. Chem. Soc. 1992, 114, 10956
  41. Molenveld, P.; Engbersen,J. F. J.; Kooijman, H.; Spek, A. L.; Reinhoudt, D. N. J. Am. Chem.Soc. 1998, 120, 6726 https://doi.org/10.1021/ja9805324
  42. Zeng, C.; Tang, Y.; Zheng, Q.; Huang, L.; Xin, B.; Huang, Z.Tetrahedron Lett. 2001, 42, 6179 https://doi.org/10.1016/S0040-4039(01)01215-1
  43. Vreekamp, R. H.; Verboom,W.; Reinhoudt, D. N. Rec. Trav. Chim.Pays-Bas 1996, 115, 363
  44. Sidorov, V.; Kotch, F. W.; El-Kouedi, M.; Davis, J. T. Chem. Commun. 2000, 2369
  45. Kim, S. J.; Kim, B. H. Tetrahedron Lett. 2002, 43, 6367 https://doi.org/10.1016/S0040-4039(02)01372-2
  46. Kim, S. J.; Lee, Y. S.; Kim, B. H. Nucleic Acids Res. Suppl. 2002, 2, 3 https://doi.org/10.1093/nass/2.1.3
  47. Kool, E. T. Acc. Chem. Res. 1998, 31, 502 https://doi.org/10.1021/ar9602462
  48. Wang, S.;Friedman, A.; Kool, E. T. Biochemistry 1995, 34, 9774 https://doi.org/10.1021/bi00030a015
  49. Azhayeva, E.; Azhayev, A.; Guzaev, A.; Hovinen, J.; Lonnberg,H. Nucleic Acids Res. 1995, 23, 1170 https://doi.org/10.1093/nar/23.7.1170
  50. Kim, S. J.; Kim, B. H. Nucleic Acids Res. 2003, 31, 2725 https://doi.org/10.1093/nar/gkg391
  51. Kim, S. J.; Bang, E. K.; Kim, B. H. Nucleic Acids Res. Suppl. 2003, 3, 31 https://doi.org/10.1093/nass/3.1.31
  52. Terech, P.;Weiss, R. G. Chem. Rev. 1997, 97, 3133 https://doi.org/10.1021/cr9700282
  53. Abdallah, D. J.;Weiss, R. G. Adv. Mater. 2000, 12, 1237 https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
  54. Otsuni, E.; Kamaras,P.; Weiss, R. G. Angew. Chem., Int. Ed. Engl. 1996, 35, 1324 https://doi.org/10.1002/anie.199613241
  55. Menger, F. M.; Yamasaki, Y.; Catlin, K. K.; Nishimi, T. Angew.Chem., Int. Ed. Engl. 1995, 34, 585 https://doi.org/10.1002/anie.199505851
  56. Bhattacharya, S.;Krishnan-Ghosh, Y. Chem. Commun. 2001, 185
  57. Stock, H. T.; Turner, N. J.; McCague, R. J. Chem. Soc., Chem. Commun. 1995, 2063
  58. Hanabusa, K.; Matsumoto, Y.; Miki, T.;Koyama, T.; Shirai, H. J. Chem. Soc., Chem. Commun. 1994, 1401
  59. Yoza, K.; Ono, Y.; Yoshihara, K.; Akao, T.; Shinmori, H.;Masayuki, T.; Shinkai, S. Reinhoudt, D. N. Chem. Commun.1998, 907
  60. Yun, Y. J.; Park, S. M.; Kim, B. H. Chem. Commun. 2003, 254
  61. Park, S. M.; Yun, Y. J.; Kim, B. H. Nucleic Acids Res. Suppl. 2003, 3, 27 https://doi.org/10.1093/nass/3.1.27
  62. Sugiyasu, K.; Numata, M.; Fujita, N.; Park, S. M.; Yun, Y. J.;Kim, B. H.; Shinkai, S. Chem. Commun. 2004, 1996
  63. Tanaka, K.; Okahata, Y. J. Am. Chem. Soc. 1996, 118, 10679
  64. Numata, M.; Shinkai, S. Chem. Lett. 2003, 32, 308 https://doi.org/10.1246/cl.2003.308
  65. Iwaura,R.; Yoshida, K.; Matsuda, M.; Ohnishi-Kameyama, M.; Yoshida,M.; Shimizu, T. Angew. Chem., Int. Ed. 2003, 42, 1009 https://doi.org/10.1002/anie.200390257
  66. Friedrich, W. Vitamins; Walter de Grueter & Co.: Berlin, 1998;and references therein
  67. Bhuniya, S.; Park, S. M.; Kim, B. H. Org. Lett. 2005, 7, 1741 https://doi.org/10.1021/ol050300r
  68. Park, S. M.; Lee, Y. S.; Kim, B. H. Chem. Commun. 2003, 2912
  69. Suzuki, M.; Yumoto, M.; Kimura, M.; Shirai, H.; Hanabusa, K.Chem. Commun. 2002, 884
  70. Suzuki, M.; Yumoto, M.; Kimura,M.; Shirai, H.; Hanabusa, K. Chem. Eur. J. 2003, 9, 348 https://doi.org/10.1002/chem.200390030
  71. Taden, A.; Tait, A. H.; Kraft, A. J. Polym. Sci., Part A: Polym.Chem. 2002, 40, 4333 https://doi.org/10.1002/pola.10509
  72. Wang, G.; Hamilton, A. D. Chem. Commun. 2003, 310
  73. Ono, Y.; Nakashima, K.; Sano, M.; Kanekiyo, Y.; Inoue, K.; Hojo,J.; Shinkai, S. Chem. Commun. 1998, 1477
  74. Jung, J. H.; Ono, Y.; Shinkai, S. Langmuir 2000, 16, 1643 https://doi.org/10.1021/la990901p
  75. Jung, J. H.; Ono, Y.; Kanekiyo, K.; Hanabusa, K.; Shinkai, S. J.Am. Chem. Soc. 2000, 122, 5008 https://doi.org/10.1021/ja000449s
  76. Kim, S. S.; Zhang, W.; Pinnavaia, T. J. Science 1998, 282, 1302 https://doi.org/10.1126/science.282.5392.1302
  77. Jung, J. H.; Yoshida, K.; Shimizu, T. Langmuir 2002, 18, 8724 https://doi.org/10.1021/la020594e
  78. Jung, J. H.; Lee, S. S.; Shinkai, S.; Iwaura, R.; Shimizu, T.Bull. Korean Chem. Soc. 2004, 25, 63 https://doi.org/10.5012/bkcs.2004.25.1.063
  79. Jung, J. H.; Rim, J. A.; Lee, S. J.; Lee, H.; Park, S. M.; Kim, B. H.Bull. Korean Chem. Soc. 2005, 26, 34 https://doi.org/10.5012/bkcs.2005.26.1.034
  80. Boraei, A. A. A. J. Chem. Eng. Data 2001, 46, 939 https://doi.org/10.1021/je010031p
  81. Sommerdijk, N. A. J. M.; Hoeks, T. H. L.; Synak, M.; Feiters,M. C.; Nolte, R. J. M.; Zwanenburg, B. J. Am. Chem. Soc. 1997,119, 4338 https://doi.org/10.1021/ja962303s
  82. Vandenburg, Y. R.; Zhang, Z.; Fishkind, D. J.;Smith, B. D. Chem. Commun. 2000, 149
  83. Wang, G.;Hollingsworth, R. I. J. Org. Chem. 1999, 64, 4140 https://doi.org/10.1021/jo9902852
  84. Srisiri, W.;Sisson, T. M.; O'Brien, D. F. J. Am. Chem. Soc. 1996, 118, 11327 https://doi.org/10.1021/ja961940f
  85. Kitamoto, D.; Ghosh, S.; Ourisson, G.; Nakatani, Y. Chem.Commun. 2000, 861
  86. Batrakov, S. G.; Nikitin, D. I.;Sheichenko, V. I.; Ruzhitsky, A. O. Biochim. Biophys. Acta 1997, 1347, 127 https://doi.org/10.1016/S0005-2760(97)00060-X
  87. Moreau, L.; Barthelemy, P.; El Maataoui, M.; Grinstaff, M. W. J.Am. Chem. Soc. 2004, 126, 7533 https://doi.org/10.1021/ja039597j
  88. Choi, S. K.; Vu, T. K.; Jung, J. M.; Kim, S. J.; Jung, H. R.; Chang,T.; Kim, B. H. ChemBioChem. 2005, 6, 432 https://doi.org/10.1002/cbic.200400320
  89. Charvet, A.-S.; Camplo, M.; Faury, P.; Graciet, J.-C.; Mourier,N.; Chermann, J.-C.; Kraus, J.-L. J. Med. Chem. 1994, 37, 2216 https://doi.org/10.1021/jm00040a014
  90. Soudeyns, H.; Yao, Q.; Belleau, B.; Kraus, J.-L.; Nguyen-Ba,N.; Spira, B.; Wainberg, M. Antimicrob. Agents Chemother. 1991, 35, 1386 https://doi.org/10.1128/AAC.35.7.1386
  91. Schinazi, R.; Chu, C.; Peck, A.; McMillan, A.;Methias, R.; Cannon, D.; Jeong, L.; Beach, J. W.; Choi, W.;Yeolla, S.; Liotta, D. Antimicrob. Agents Chemother. 1992, 36, 672 https://doi.org/10.1128/AAC.36.3.672
  92. Adams, D. R.; Boyd, A. S. F.; Ferguson, R. Nucleosides Nucleotides1998, 17, 1053 https://doi.org/10.1080/07328319808004220
  93. Gi, H.-J.; Xiang, Y.; Schinazi, R. F.; Zhao, K. J. Org. Chem.1997, 62, 88 https://doi.org/10.1021/jo961779r
  94. Xiang, Y.; Gong, Y.; Zhao, K. Tetrahedron Lett.1996, 37, 4877 https://doi.org/10.1016/0040-4039(96)00999-9
  95. Xiang, Y.; Chen, J.; Schinazi, R. F.; Zhao, K.Tetrahedron Lett. 1995, 36, 7193 https://doi.org/10.1016/0040-4039(95)01499-8
  96. Kim, B. H.; Jeong, E. J.; Hwang, G. T.; Venkatesan, N. Synthesis 2001, 2191
  97. Lee, Y. S.; Kim, B. H. Bioorg. Med. Chem. Lett.2002, 12,1395 https://doi.org/10.1016/S0960-894X(02)00182-8
  98. Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 543 https://doi.org/10.1021/cr00102a001
  99. DeMesmaeker, A.; Haener, R.; Martin, P.; Moser, H. E. Acc. Chem.Res. 1995, 28, 366 https://doi.org/10.1021/ar00057a002
  100. Egli, M. Angew. Chem., Int. Ed.Engl. 1996, 35, 1894 https://doi.org/10.1002/anie.199618941
  101. Kim, J. Y.; Kim, B. H. Nucleosides Nucleotides 2000, 19, 637 https://doi.org/10.1080/15257770008035014
  102. Kim, S. J.; Lee, J. Y.; Ko, K. H.; Kim, B. H. Bull. Korean Chem.Soc. 1998, 19, 816
  103. Kim, S. J.; Lee, J. Y.; Kim, B. H. Bioorg. Med. Chem. Lett. 1998, 8, 1313 https://doi.org/10.1016/S0960-894X(98)00210-8
  104. Kong, J. R.; Kim, S. K.; Moon, B. J.; Kim, S. J.; Kim, B. H. Nucleosides Nucleotides Nucleic Acids 2001, 20, 1751 https://doi.org/10.1081/NCN-100107187

Cited by

  1. Pyrene-Modified Unlocked Nucleic Acids: Synthesis, Thermodynamic Studies, and Fluorescent Properties vol.13, pp.4, 2012, https://doi.org/10.1002/cbic.201100689
  2. A solid-phase CuAAC strategy for the synthesis of PNA containing nucleobase surrogates vol.4, pp.1, 2013, https://doi.org/10.4161/adna.23982
  3. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function vol.53, pp.6-7, 2013, https://doi.org/10.1002/ijch.201300010
  4. Modification of Nucleic Acids by Azobenzene Derivatives and Their Applications in Biotechnology and Nanotechnology vol.9, pp.12, 2014, https://doi.org/10.1002/asia.201402758
  5. A novel bis(pinacolato)diboron-mediated N–O bond deoxygenative route to C6 benzotriazolyl purine nucleoside derivatives vol.14, pp.29, 2016, https://doi.org/10.1039/C6OB01170E
  6. Chemical Modification of Nucleic Acids Toward Functional Nucleic Acid Systems vol.37, pp.51, 2006, https://doi.org/10.1002/chin.200651235
  7. Expanded Fluorescent Nucleoside Analog as Hybridization Probe vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1923
  8. Water gelation abilities of alkylbenzyltriazole-appended 2′-deoxyribonucleoside and ribonucleoside vol.5, pp.4, 2007, https://doi.org/10.1039/b617559g
  9. Probing the stable G-quadruplex transition using quencher-free end-stacking ethynyl pyrene–adenosine vol.2007, pp.27, 2006, https://doi.org/10.1039/b707278c
  10. Detection of structure-switching in G-quadruplexes using end-stacking ability vol.18, pp.14, 2006, https://doi.org/10.1016/j.bmcl.2008.06.033
  11. Synthesis of Nucleoside-based Phospholipid Amphiphiles vol.31, pp.3, 2006, https://doi.org/10.5012/bkcs.2010.31.03.549
  12. Quencher-free Linear Beacon Systems with Dual Fluorene-labeled Deoxyuridines vol.32, pp.11, 2006, https://doi.org/10.5012/bkcs.2011.32.11.4129
  13. 9-Anthraldehyde oxime: a synthetic tool for variable applications vol.151, pp.11, 2006, https://doi.org/10.1007/s00706-020-02695-2
  14. Fluorescent Nucleic Acid Systems for Biosensors vol.94, pp.3, 2006, https://doi.org/10.1246/bcsj.20200351