DOI QR코드

DOI QR Code

Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes

  • Park, Hyun (Department of Chemistry, Pusan National University) ;
  • Kwon, Tae-guen (Department of Chemistry, Pusan National University) ;
  • Park, Deog-Su (Department of Chemistry, Pusan National University) ;
  • Shim, Yoon-Bo (Department of Chemistry, Pusan National University)
  • Published : 2006.11.20

Abstract

The application of poly(Co(II)-(1,8-diaminonaphthalene))(poly(Co-DAN)) and poly(1,8-diaminonaphthalene) (Poly(1,8-DAN)) to the electrocatalytic reduction of molecular oxygen was investigated, which were electrochemically grown by the potential cycling method on the glassy carbon electrodes. The reduction of oxygen at the polymer and its metal complex polymer coated electrodes were irreversible and diffusion controlled. The Poly(1,8-DAN) and Poly(Co-DAN) films revealed the potential shifts for the oxygen reduction to 30 mV and 110 mV, respectively, in an aqueous solution, compared with that of the bare electrode. Hydrodynamic voltammetry with a rotating ring-disk electrode showed that Poly(1,8-DAN) and Poly(Co-DAN) coated electrodes converted respectively 84% and 22% of $O_2$ to $H_2O$ via a four electron reduction pathway.

Keywords

References

  1. Yeager, E. Electrochimica Acta 1984, 29, 1527 https://doi.org/10.1016/0013-4686(84)85006-9
  2. Zagal, J.; Bindra, P.; Yeager, E. J. Electrochem. Soc. 1980, 127, 1506 https://doi.org/10.1149/1.2129940
  3. Jeong, E. D.; Won, M. S.; Shim, Y.-B. Bull. Korean Chem. Soc. 1998, 19, 417
  4. Kinoshita, K. Carbon; John Wiley & Sons. Inc.: New York, USA, 1988; Ch. 6
  5. Murphy, O. J.; Srinivasan, S.; Conway, B. E. Electrochemistry in Transition from the 20th to the 21st Century; Plenum Press: New York, U.S.A., 1992; Ch. 9
  6. Brezina, M. Fressnius. Anal. Chem. 1996, 224, 74
  7. Kolpin, C. F.; Swafford, H. S. Anal. Chem. 1977, 50, 920 https://doi.org/10.1021/ac50029a025
  8. Song, E.; Paik, W. Bull. Korean Chem. Soc. 1998, 19, 183 https://doi.org/10.1007/BF02706893
  9. Jasinki, R. Nature 1964, 201, 1212 https://doi.org/10.1038/2011212a0
  10. Jasinki, R. J. Electrochem. Soc. 1965, 112, 526 https://doi.org/10.1149/1.2423590
  11. Zhang, J.; Anson, F. C. J. Electroananl. Chem. 1992, 341, 323 https://doi.org/10.1016/0022-0728(92)80491-L
  12. Zhang, J.; Anson, F. C. J. Electroananl. Chem. 1993, 348, 81 https://doi.org/10.1016/0022-0728(93)80124-Z
  13. Bull, R. A.; Fan, F. R.; Bard, A. J. J. Electrochem. Soc. 1984, 131, 687 https://doi.org/10.1149/1.2115674
  14. Saraceno, R. A.; Pack, J. G.; Ewing, A. G. J. Electroanal. Chem. 1986, 197, 265 https://doi.org/10.1016/0022-0728(86)80154-1
  15. Ohsaka, T.; Chiba, K.; Oyama, N. Nippon Kagaku Kasishi 1986, 457
  16. Gudavicius, A. V.; Razumas, V. J.; Kults, J. J. J. Electroananl. Chem. 1987, 219, 153 https://doi.org/10.1016/0022-0728(87)85037-4
  17. O'Brien, R. N.; Santranam, R. S. V. Electrochim Acta 1987, 32, 8
  18. Ohsaka, T.; Watanabe, T.; Kitamura, F.; Oyama, N.; Tokuda, K. Chem. Commun. 1991, 487
  19. Mengoli, G.; Musiani, M. M. J. Electroanal. Chem. 1989, 269, 99 https://doi.org/10.1016/0022-0728(89)80106-8
  20. Hu, N.; Howe, D. J.; Ahmaddk, M. F.; Rusling, J. F. Anal. Chem. 1992, 64, 24
  21. Park, S.-M. In Handbook of Organic Conductive Molecules and Polymers; Nalwa, H. S., Ed.; John Wiley & Sons: New York, USA, 1997; Vol. 3, Ch. 9
  22. Park, S.-M.; Lee, H. J. Bull. Korean Chem. Soc. 2005, 26, 697 https://doi.org/10.5012/bkcs.2005.26.5.697
  23. Bredas, J. L. In Handbook of Conducting Polymers; Skotheim, T. A., Ed.; Marcel Dekker, Inc.: New York, 1986; Vol. 2, Ch. 25
  24. Lee, J.-W.; Park, D.-S.; Shim, Y.-B.; Park, S.-M. J. Electrochem. Soc. 1992, 139, 3507 https://doi.org/10.1149/1.2069107
  25. Jin, C. S.; Shim, Y.-B.; Park, S.-M. Synth. Met. 1995, 69, 561 https://doi.org/10.1016/0379-6779(94)02569-K
  26. Jin, C. S. Thesis, Ph.D., Pusan National University: Korea, 1996; unpublished work
  27. Boophathi, M.; Won, M.-S.; Kim, Y. H.; Shin, S. C.; Shim, Y.-B. J. Electrochem. Soc. 2002, 149, E265 https://doi.org/10.1149/1.1482769
  28. Bard, A. J.; Faulkner, L. R. Electrochemical Methodes; Wiley: New York, 2001
  29. Tan, N.; Bekaroglu, O.; Kadirgan, F. J. Electroananl. Chem. 1994, 364, 251 https://doi.org/10.1016/0022-0728(93)02912-2
  30. Gubbins, K.; Walker, R. J. Electrochem, Soc. 1964, 112, 469 https://doi.org/10.1149/1.2423575
  31. Wilke, W. Solubilites of Inorganic and Metal Organic Compound; American Chemical Society: Washington, D.C. 1969; Vol. II

Cited by

  1. Applications of Conductive Polymers to Electrochemical Sensors and Energy Conversion Electrodes vol.4, pp.4, 2013, https://doi.org/10.5229/JECST.2013.4.4.125
  2. An anthraquinone moiety/cysteamine functionalized-gold nanoparticle/chitosan based nanostructured composite for the electroanalytical detection of dissolved oxygen within aqueous media vol.6, pp.21, 2014, https://doi.org/10.1039/C4AY01207K
  3. Facile potentiostatic preparation of functionalized polyterthiophene-anchored graphene oxide as a metal-free electrocatalyst for the oxygen reduction reaction vol.3, pp.10, 2015, https://doi.org/10.1039/C4TA06774F
  4. Electrocatalysis of Oxygen Reduction by Cu-containing Polymer Films on Glassy Carbon Electrodes vol.28, pp.8, 2006, https://doi.org/10.5012/bkcs.2007.28.8.1322
  5. Electrochemical Behavior of Norfloxacin and Its Determination at Poly(methyl red) Film Coated Glassy Carbon Electrode vol.29, pp.5, 2006, https://doi.org/10.5012/bkcs.2008.29.5.988
  6. CdSe QDs reinforced poly(1, 8 diaminonaphthalene) (PDAN) offers improved thermal and AC conductivity properties vol.1, pp.8, 2006, https://doi.org/10.1007/s42452-019-0835-3