DOI QR코드

DOI QR Code

Ab Initio and Experimental Studies on Dibenzothiazyl-Disulfide

  • Jian, Fang-Fang (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Zhang, Ke-Jie (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Zhao, Pu-Su (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology) ;
  • Zheng, Jian (New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology)
  • Published : 2006.01.20

Abstract

Ab initio calculations of the structure, atomic charges and natural bond orbital (NBO) have been performed at HF/6-311G** and B3LYP/6-311G** levels for the title compound of dibenzothiazyl-disulfide. The calculated results show that the two nitrogen atoms have the biggest negative charges and they are the potential sites to react with the metallic ions, which make the title compound become a di-dentate ligand. Vibrational frequencies of the title compound have been obtained and compared with the experimental value and the comparison indicates that B3LYP/6-311G** level is better than HF/6-311G** level to predict the vibrational frequencies for the system studied here. For the title compound, electronic absorption spectra calculated by time?ependent density functional theory (TD-DFT) are more accurate than Hartree-Focksingle-excitation CI (CI-Singles) method. NBO analyses show that the electronic transitions are mainly derived from the contribution of bands $\pi\rightarrow\pi^{*}$. Thermodynamic calculated results show that the formation of the title compound from 2-mercaptobenzothiazole is a spontaneous process at room temperature with the change of free Gibbs being negative value.

Keywords

References

  1. Contini, G.; Carravetta, V.; Di Castro, V.; Stranges, S.; Richter, R.; Alagia, M. J. Phys. Chem. A 2001, 105, 7308 https://doi.org/10.1021/jp010865e
  2. Ohsawa, M.; Suetaka, W. Corrosion Science 1979, 19, 709 https://doi.org/10.1016/S0010-938X(79)80142-0
  3. Zhang, L. X.; Xie, M. H.; Ma, H. L. Hechenghuaxue. 2001, 9, 156
  4. Antebi, S.; Alper, H. Tetrahedron Lett. 1985, 26, 2609 https://doi.org/10.1016/S0040-4039(00)98115-2
  5. Parry, R. J. Tetrahedron 1983, 39, 1215 https://doi.org/10.1016/S0040-4020(01)91887-3
  6. Karchmer, J. H. The Analytical Chemistry of Sulfur and Its Compounds; Wiley: New York, 1972; p 103
  7. Zingaro, R. A.; Meyers, E. A. Cryst. Struct. Commun. 1980, 9, 1167
  8. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902 https://doi.org/10.1021/ja00299a024
  9. Schlegel, H. B. J. Comput. Chem. 1982, 3, 163
  10. Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17, 49 https://doi.org/10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0
  11. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 200
  12. Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1988, 169, 41 https://doi.org/10.1016/0166-1280(88)80248-3
  13. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899 https://doi.org/10.1021/cr00088a005
  14. Foster, J. P.; Weinhold, F. J. Am. Chem. Soc. 1980, 102, 7211 https://doi.org/10.1021/ja00544a007
  15. Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454 https://doi.org/10.1016/0009-2614(96)00440-X
  16. Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439 https://doi.org/10.1063/1.475855
  17. Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Phys. Chem. 1992, 96, 135 https://doi.org/10.1021/j100180a030
  18. Frish, A.; Nielsen, A. B.; Holder, A. J. Gaussview Users Manual; Gaussian Inc: Pittsburg, 2000

Cited by

  1. Bis(2-aminopyridinium) 5,5′-disulfanediylbis(1,3,4-thiadiazole-2-thiolate) monohydrate vol.67, pp.4, 2011, https://doi.org/10.1107/S1600536811008336
  2. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  3. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces: A density functional theory study of structure-reactivity relations vol.409, pp.None, 2006, https://doi.org/10.1016/j.colsurfa.2012.04.036