DOI QR코드

DOI QR Code

Potential Energy Surfaces for Ligand Exchange Reactions of Square Planar Diamagnetic PtY2L2 Complexes:Hydrogen Bond (PtY2L2···L') versus Apical (Y2L2Pt···L') Interaction

  • Park, Jong-Keun (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Bong-Gon (Department of Chemistry Education and Research Institute of Natural Science, Gyeongsang National University)
  • Published : 2006.09.20

Abstract

The geometrical structures, potential energy surfaces, and energetics for the ligand exchange reactions of tetracoordinated platinum $(PtY_2L_2\;:\;Y,\;L=Cl^-,\;OH^-,\;OH_2,\;NH_3)$ complexes in the ligand-solvent interaction systems were investigated using the ab initio Hartree-Fock (HF) and Density Functional Theory (DFT) methods. The potential energy surfaces for the ligand exchange reactions used for the conversions of $(PtCl_4\;+\;H_2O)^{^\ast_\ast}\;to\;[PtCl_3(H_2O)\;+\;Cl^-]$ and $[Pt(NH_3)_2Cl_2\;+\;H_2O]$$[Pt(NH_3)_2Cl_2\;+\;H_2O]$ to $[Pt(NH_3)_2Cl(H_2O)\;+\;Cl^-] $ were investigated in detail. For these two exchange reactions, the transition states $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime])^{^\ast_\ast} $ correspond to complexes such as $(PtCl_4{\cdot}{\cdot}{\cdot}H_2O)^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$, respectively. In the transition state, $([PtCl_4{\cdot}{\cdot}{\cdot}H_2O]^{^\ast_\ast}$ and $[Pt(NH_3)_2Cl_2{\cdot}{\cdot}{\cdot}H_2O]]^{^\ast_\ast})$ have a kind of 6-membered $(Pt-Cl{\cdot}{\cdot}{\cdot}HOH{\cdot}{\cdot}{\cdot}Cl)$ and $(Pt-OH{\cdot}{\cdot}{\cdot}Cl{\cdot}{\cdot}{\cdot}HN)$ interactions, respectively, wherein a central Pt(II) metal directly combines with a leaving $Cl^-$ and an entering $H_2O$. Simultaneously, the entering $H_2O$ interacts with a leaving $Cl^-$. No vertical one metal-ligand interactions $([PtY_2L_2{\cdot}{\cdot}{\cdot}L^\prime]) $ are found at the axial positions of the square planar $(PtY_2L_2)$ complexes, which were formed via a vertically associative mechanism leading to $D_{3h}$ or $C_{2v}$-transition state symmetry. The geometrical structure variations, molecular orbital variations (HOMO and LUMO), and relative stabilities for the ligand exchange processes are also examined quantitatively. Schematic diagrams for the dissociation reactions of {PtCl4(H2O)n(n=2,4)} into {$PtCl_3(H_2O)_{(n-2)}\;+\;Cl^-(H_2O)_2$} and the binding energies {$PtCl_4(H_2O)_n$(n = 1-5)} of $PtCl_4$ with water molecules are drawn.

Keywords

References

  1. Deeth, R. J.; Elding, L. I. Inorg. Chem. 1996, 35, 5019 https://doi.org/10.1021/ic950335v
  2. Deeth, R. J. Chem. Phys. Lett. 1996, 261, 45 https://doi.org/10.1016/0009-2614(96)00875-5
  3. Burda, J. V.; Zeizinger, M.; Sponer, J.; Leszczynski, J. J. Chem. Phys. 2000, 113, 2224 https://doi.org/10.1063/1.482036
  4. Zeizinger, M.; Burda, J. V.; Sponer, J.; Kapsa, V.; Leszczynski, J. J. Phys. Chem. A 2001, 105, 8086 https://doi.org/10.1021/jp010636s
  5. Burda, J. V.; Zeizinger, M.; Leszczynski, J. J. Chem. Phys. 2004, 120, 1253 https://doi.org/10.1063/1.1633757
  6. Zhang, Y.; Guo, Z.; You, X.-Z. J. Am. Chem. Soc. 2001, 123, 9378 https://doi.org/10.1021/ja0023938
  7. Cost, L. A. S.; Rocha, W. R.; De Almeida, W. B.; Dos Santos, H. F. J. Chem. Phys. 2003, 118, 10584 https://doi.org/10.1063/1.1573177
  8. Chval, Z.; Sip, M. J. Mol. Struct. 2000, 532, 59 https://doi.org/10.1016/S0166-1280(00)00502-9
  9. Ayala, R.; Marcos, E. S.; Daz-Moreno, S.; Sole, V. A.; Muooz-Paez, A. J. Phys. Chem. B 2001, 105, 7588 https://doi.org/10.1021/jp010326+
  10. Naidoo, K. J.; Klatt, G.; Koch, K. R.; Robinson, D. J. Inorg. Chem. 2002, 41, 1845 https://doi.org/10.1021/ic010719n
  11. Wysokinski, R.; Michalska, D. J. Comput. Chem. 2001, 22, 901 https://doi.org/10.1002/jcc.1053
  12. Hush, N. S.; Schamberger, J.; Bacskay, G. B. Coor. Chem. Rev. 2005, 249, 299 https://doi.org/10.1016/j.ccr.2004.05.021
  13. Park, J. K.; Kim, B. G.; Koo, I. S. Bull. Korean Chem. Soc. 2005, 26, 1795 https://doi.org/10.1007/s11814-009-0331-3
  14. Park, J. K.; Cho, Y. G.; Lee, S. S.; Kim, B. G. Bull. Korean Chem. Soc. 2004, 25, 85 https://doi.org/10.5012/bkcs.2004.25.1.085
  15. Caminiti, R.; Carbone, M.; Sadun, C. J. Mol. Liquid 1998, 75, 149 https://doi.org/10.1016/S0167-7322(98)82003-5
  16. Hay, P. J. J. Am. Chem. Soc. 1981, 103, 1390 https://doi.org/10.1021/ja00396a017
  17. Noell, J. O.; Hay, P. J. Inorg. Chem. 1982, 21, 14 https://doi.org/10.1021/ic00131a004
  18. Liao, M.-s.; Zhang, Q.-er. A Inorg. Chem. 1997, 36, 396 https://doi.org/10.1021/ic960369i
  19. Ponec, R.; Oeoicha, R. J. Organomet. Chem. 1988, 431, 549
  20. Carloni, P.; Andreoni, W.; Hutter, J.; Curioni, A.; Giannozzi, P.; Parrinello, M. Chem. Phys. Lett. 1995, 234, 50 https://doi.org/10.1016/0009-2614(94)01488-H
  21. Pavankumar, P. N.; Seetharamulu, P.; Yao, S.; Saxe, J. D.; Reddy, D. G.; Hausheer, F. H. J. Comput. Chem. 1999, 20, 365 https://doi.org/10.1002/(SICI)1096-987X(199902)20:3<365::AID-JCC8>3.0.CO;2-1
  22. Atoji, M.; Richardson, J. W.; Rundle, R. E. J. Am. Chem. Soc. 1957, 79, 3017 https://doi.org/10.1021/ja01569a009
  23. Milburn, G. H. W.; Truter, M. R. J. Chem. Soc. A 1966, 1609 https://doi.org/10.1039/j19660001609
  24. Shandles, R.; Schlemper, E. O.; Murmann, R. K. Inorg. Chem. 1971, 10, 2785 https://doi.org/10.1021/ic50106a032
  25. Mais, R. H. B.; Owston, P. G.; Wood, A. M. Acta Cryst. 1972, B28, 393
  26. Ohba, S.; Sato, S.; Saito, Y. Acta Crystallogr. 1983, B39, 49
  27. Templeton, D. H.; Templeton, L. K. Acta Crystallogr. 1985, A41, 365
  28. Bengtsson, L. A.; Oskarsson, A. Acta Chem. Scand. 1992, 46, 707 https://doi.org/10.3891/acta.chem.scand.46-0707
  29. Chen, Y.; Christensen, D. H.; Nielsen, O. F.; Hyldtoft, J.; Jacobsen, C. J. H. Spectrochim. Acta 1995, A51, 595
  30. Frish, M. J.; Trucks, G. W.; Head-Gordon, M. H.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. Gaussian 03; Gaussian Inc.: Pittsburgh, 2003
  31. Andzelm, J.; Wimmer, E. J. Chem. Phys. 1992, 96, 1280 https://doi.org/10.1063/1.462165
  32. Andzelm, J.; Wimmer, E.; Salahub, D. R. The Challenge of d- and f-Electrons: Theory and Computation, ACS Symposium Series; Salahub, D. R.; Zerner, M. C., Eds; ACS: Washington D. C., 1989; No. 394, p 228
  33. Andzelm, J. Density Functional Methods in Chemistry; Labanowski, J.; Andzelm, J., Eds; Springer-Verlag: New York, 1991; p 155
  34. Becke, A. D. The Challenge of d- and f-Electrons: Theory and Computation, ACS Symposium Series, Salahub, D. R.; Zerner, M. C., Eds.; American Chemical Society: Washington D.C., 1989; No. 394; p 166
  35. Becke, A. D. Phys. Rev. 1988, A38, 3098
  36. Perdew, J. P. Phys. Rev. 1986, B33, 8822
  37. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785

Cited by

  1. Preparation and characterization of terdentate [C,N,N] acetophenone and acetylpyridine hydrazone platinacycles: a DFT insight into the reaction mechanism pp.1477-9234, 2017, https://doi.org/10.1039/C7DT03418K
  2. Characteristics of the Intermediates in the Cyclization Reactions of Heterocycle-fused[1,4]oxazine Derivatives: Stepwise versus Concerted vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2219
  3. Characteristic Effects of 4,5-Disubstituted Pyridazin-3-one Derivatives with Various Functional Groups: Ab initio Study vol.28, pp.8, 2006, https://doi.org/10.5012/bkcs.2007.28.8.1363
  4. Geometrical Structures of the First Solvation Shell of the [PdCl4]2 Core: Charge-Dipole vs Dipole-Dipole Interaction of ((PdII}...Solvent) vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2295
  5. Geometrical Characteristics and Reactivities of Tetracoordinated Pd Complexes: Mono- and Bidentate Ligands and Charged and Uncharged Ligands vol.29, pp.3, 2006, https://doi.org/10.5012/bkcs.2008.29.3.627
  6. Theoretical study of cisplatin adsorption on silica vol.258, pp.3, 2006, https://doi.org/10.1016/j.apsusc.2011.08.124
  7. Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process vol.16, pp.7, 2019, https://doi.org/10.3390/ijerph16071092