DOI QR코드

DOI QR Code

Nanocrystals and Their Biomedical Applications

  • Published : 2006.01.20

Abstract

Shape controlled synthesis of inorganic nanocrystals is one of the important issues in materials chemistry due to their novel shape dependent properties. Although various shapes of nanocrystals have been developed, a systematic account on the shape control of these nanocrystals still remains an important subject in materials chemistry. In this article, we will overview the recent developments in the geometrical shape evolution of semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have appeared as zero-dimesional (D) polyhedrons, one-D rods and wires, two-D plates and prisms, and other advanced shapes such as branched rods, stars, and inorganic dendrites. Important parameters which determine the geometrical shapes of nanocrystals are also illustrated. In addition, as a possible application of such nanocrystals for biomedical sciences, we further describe their utilizations for cancer diagnosis through nanocrystal-assisted magnetic resonance imaging (MRI).

Keywords

References

  1. Alivisatos, A. P. Science 1996, 271, 933 https://doi.org/10.1126/science.271.5251.933
  2. Markovich, G. C.; Collier, P.; Henrichs, S. E.; Remacle, F.; Levine, R. D.; Heath, J. R. Acc. Chem. Res. 1999, 32, 415 https://doi.org/10.1021/ar980039x
  3. Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Science 2001, 294, 1901 https://doi.org/10.1126/science.1066541
  4. Steigerwald, M.; Brus, L. E. Acc. Chem. Res. 1990, 23, 183 https://doi.org/10.1021/ar00174a003
  5. Hu, J.; Odom, T. W.; Lieber, C. M. Acc. Chem. Res. 1999, 32, 435 https://doi.org/10.1021/ar9700365
  6. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706 https://doi.org/10.1021/ja00072a025
  7. Yang, P. MRS Bull. 2005, 30, 85 https://doi.org/10.1016/0025-5408(94)00098-0
  8. Law, M.; Goldberger, J.; Yang, P. Annu. Rev. Mater. Res. 2004, 34, 83 https://doi.org/10.1146/annurev.matsci.34.040203.112300
  9. Bakkers, E. P. A. M.; Verheijen, M. A. J. Am. Chem. Soc. 2003, 125, 3440 https://doi.org/10.1021/ja0299102
  10. Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. W.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599 https://doi.org/10.1038/nature01551
  11. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, 1947 https://doi.org/10.1126/science.1058120
  12. Kong, X. Y.; Ding, Y.; Yang, R. S.; Wang, Z. L. Science 2004, 303, 1348 https://doi.org/10.1126/science.1092356
  13. Saito, Y.; Matsumoto, T. Nature 1998, 392, 237
  14. Gao, P. X.; Wang, Z. L. J. Phys. Chem. B 2004, 108, 7534 https://doi.org/10.1021/jp049657n
  15. Kohli, P.; Martin, C. J. Drug Deliv. Sci. Tech. 2005, 15, 49 https://doi.org/10.1016/S1773-2247(05)50006-6
  16. Pileni, M. P. Langmuir 1997, 13, 3266 https://doi.org/10.1021/la960319q
  17. Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237 https://doi.org/10.1063/1.451119
  18. Song, Q.; Zhang, Z. J. J. Am. Chem. Soc. 2004, 126, 6164 https://doi.org/10.1021/ja049931r
  19. Jana, N. R.; Chen, Y.; Peng, X. Chem. Mater. 2004, 16, 3931 https://doi.org/10.1021/cm049221k
  20. Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. IBM J. Res. Dev. 2001, 45, 47 https://doi.org/10.1147/rd.451.0047
  21. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2002, 124, 3343 https://doi.org/10.1021/ja0173167
  22. Joo, J.; Na, H. B.; Yu, T.; Yu, J. H.; Kim, Y. W.; Wu, F.; Zhang, J. Z.; Hyeon, T. J. Am. Chem. Soc. 2003, 125, 11100 https://doi.org/10.1021/ja0357902
  23. Jun, Y.; Lee, S.-M.; Kang, N.-J.; Cheon, J. J. Am. Chem. Soc. 2001, 123, 615
  24. Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E. C.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59 https://doi.org/10.1038/35003535
  25. Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122, 12700 https://doi.org/10.1021/ja003055+
  26. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 1389 https://doi.org/10.1021/ja0027766
  27. Manna, L.; Million, D. J.; Miesel, A.; Scher, E. C.; Alivisatos, A. P. Nature Mater. 2003, 2, 382 https://doi.org/10.1038/nmat902
  28. Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237 https://doi.org/10.1126/science.1072086
  29. Cozzoli, P. D.; Manna, L.; Curri, M. L.; Kudera, S.; Giannini, C.; Striccoli, M.; Agostiano, A. Chem. Mater. 2005, 17, 1296 https://doi.org/10.1021/cm047874v
  30. Kim, Y.-H.; Jun, Y.; Jun, B.-H.; Lee, S.-M.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 13656 https://doi.org/10.1021/ja027575b
  31. Ahrenkiel, S. P.; Micic, O. I.; Miedaner, A.; Curtis, C. J.; Nedeljkoic, J. M.; Nozik, A. J. Nano Lett. 2003, 3, 833 https://doi.org/10.1021/nl034152e
  32. Gerion, D.; Zitseva, N.; Saw, C.; Casula, M. F.; Fakra, S.; Buuren, T. V.; Galli, G. Nano Lett. 2004, 4, 597 https://doi.org/10.1021/nl035231t
  33. Lee, S.-M.; Jun, Y.; Cho, S.-N.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 11244 https://doi.org/10.1021/ja026805j
  34. Lifshitz, E.; Bashout, M.; Kigel, A.; Eisen, M. S.; Berger, S. Nano Lett. 2003, 3, 857 https://doi.org/10.1021/nl0342085
  35. Cho, K.-S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127, 7140 https://doi.org/10.1021/ja050107s
  36. Jun, Y.; Jung, Y.; Cheon, J. J. Am. Chem. Soc. 2002, 124, 615 https://doi.org/10.1021/ja016887w
  37. Yin, M.; Gu, Y.; Kuskovsky, I. L.; Andelman, T.; Zhu, Y.; Neumark, G. F.; O'Brien, S. J. Am. Chem. Soc. 2004, 126, 6206 https://doi.org/10.1021/ja031696+
  38. Mouge, M.; Kahn, M. L.; Maisonnat, A.; Chaudret, B. Angew. Chem. Int. Ed. 2003, 42, 5321 https://doi.org/10.1002/anie.200351949
  39. Niederberger, M.; Bartl, M.-H.; Stucky, G. D. J. Am. Chem. Soc. 2002, 124, 13642 https://doi.org/10.1021/ja027115i
  40. Jun, Y.; Casula, M. F.; Sim, J.-H.; Kim, S. Y.; Cheon, J.; Alivisatos, A. P. J. Am. Chem. Soc. 2003, 125, 15981 https://doi.org/10.1021/ja0369515
  41. Seo, J.; Jun, Y.; Ko, S. J.; Cheon, J. J. Phys. Chem. B 2005, 109, 5389 https://doi.org/10.1021/jp0501291
  42. Lee, K.; Seo, W. S.; Park, J. T. J. Am. Chem. Soc. 2003, 125, 3408 https://doi.org/10.1021/ja034011e
  43. Park, J.; Kang, E.; Bae, C. J.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Park, H.-M.; Hyeon, T. J. Phys. Chem. B 2004, 108, 13594 https://doi.org/10.1021/jp048229e
  44. Urban, J. J.; Yun, W. S.; Gu, Q.; Park, H. J. Am. Chem. Soc. 2002, 124, 1186 https://doi.org/10.1021/ja017694b
  45. Cheon, J.; Kang, N.-J.; Lee, S.-M.; Lee, J.-H.; Yoon, J.-H.; Oh, S.- J. J. Am. Chem. Soc. 2004, 126, 1950 https://doi.org/10.1021/ja038722o
  46. Larsen, T.-H.; Sigman, M.; Ghezelbash, A.; Doty, R. C.; Korgel, B. A. J. Am. Chem. Soc. 2003, 125, 5638 https://doi.org/10.1021/ja0342087
  47. Ghezelbash, A.; Sigman, M.; Doty, R. C.; Korgel, B. A. Nano Lett. 2004, 4, 537 https://doi.org/10.1021/nl035067+
  48. Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 12874 https://doi.org/10.1021/ja027262g
  49. Park, J.-I.; Kang, N.-J.; Jun, Y.; Oh, S.-J.; Ri, H. C.; Cheon, J. Chemphyschem 2002, 3, 543 https://doi.org/10.1002/1439-7641(20020617)3:6<543::AID-CPHC543>3.0.CO;2-E
  50. Cao, Y. C. J. Am. Chem. Soc. 2004, 126, 7456 https://doi.org/10.1021/ja0481676
  51. Macintyre, J. E. Dictionary of Inorganic Compounds, 1st ed.; London: New York, 1992
  52. Lu, J.; Qi, P.; Peng, Y.; Meng, Z.; Yang, Z.; Yu, W.; Qian, Y. Chem. Mater. 2001, 13, 2169 https://doi.org/10.1021/cm010049j
  53. Zelaya-Angel, O.; Alvaradi-Gol, J. J.; Lozada-Morales, R.; Vargas, H.; Ferreira da Silva, A. Appl. Phys. Lett. 1994, 64, 291 https://doi.org/10.1063/1.111184
  54. Yeh, C.-Y.; Lu, Z. W.; Froyen, S.; Zunger, A. Phys. Rev. B 1992, 46, 10086 https://doi.org/10.1103/PhysRevB.46.10086
  55. Micic, O. I.; Sprague, J. R.; Curtis, C. J.; Jones, K. M.; Machol, J. L.; Nozik, A. J.; Giessen, H.; Fluegel, B.; Mohs, G.; Peyghambarian, N. J. Phys. Chem. 1995, 99, 7754 https://doi.org/10.1021/j100019a063
  56. Hu, J.; Li, L.-S.; Yang, W.; Manna, L.; Wang, L.; Alivisatos, A. P. Science 2001, 292, 2060 https://doi.org/10.1126/science.1060810
  57. Sugimoto, T. Monodispersed Particles, 1st ed.; Elsevier Science: 2001
  58. Alivisatos, A. P. Nature Biotechnol. 2004, 22, 47 https://doi.org/10.1038/nbt927
  59. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016 https://doi.org/10.1126/science.281.5385.2016
  60. Lidke, D. S.; Nagy, P.; Heintzmann, R.; Arndt-Jovin, D. J.; Post, J. N.; Grecco, H. E.; Jares-Erijman, E. A.; Jovin, T. M. Nature Biotechnol. 2004, 22, 198 https://doi.org/10.1038/nbt929
  61. Kim, S. et al. Nature Biotechnol. 2004, 22, 93 https://doi.org/10.1038/nbt920
  62. Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759 https://doi.org/10.1126/science.1077194
  63. Zhao, M.; Beauregard, D. A.; Loizou, L.; Davletov, B.; Brindle, K. M. Nature Med. 2001, 7, 1241 https://doi.org/10.1038/nm1101-1241
  64. Kang, H. W.; Josephson, L.; Petrovsky, A.; Weissleder, R.; Bogdanov Jr., A. Bioconj. Chem. 2002, 13, 122 https://doi.org/10.1021/bc0155521
  65. Artemov, D.; Mori, N.; Okollie, B.; Bhujwalla, A. M. Magn. Reson. Med. 2003, 49, 403 https://doi.org/10.1002/mrm.10406
  66. Weissleder, R.; Moore, A.; Mahmood, U.; Bhorade, R.; Benveniste, H.; Chiocca, E. A.; Basilion, J. P. Nature Med. 2000, 6, 351 https://doi.org/10.1038/73219
  67. Perez, J. M.; Josephson, L.; O'Loughlin, T.; Hogemann, D.; Weissleder, R. Nature Biotechol. 2002, 20, 816 https://doi.org/10.1038/nbt720
  68. Weissleder, R.; Lee, A. S.; Khaw, B. A.; Shen, T.; Brady, T. J. Radiology 1992, 182, 381 https://doi.org/10.1148/radiology.182.2.1732953
  69. Weissleder, R.; Lee, A. S.; Fischman, A. J.; Reimer, P.; Shen, T.; Wilkinson, R.; Callahan, R. J.; Brady, T. J. Radiology 1991, 181, 245 https://doi.org/10.1148/radiology.181.1.1887040
  70. Fauconnier, N.; Pons, J. N.; Roger, J.; Bee, A. J. Colloid Interface Sci. 1997, 194, 427 https://doi.org/10.1006/jcis.1997.5125
  71. Shen, T.; Weissleder, R.; Papisov, M.; Bogdanov, A. Jr.; Brady, T. Mag. Reson. Med. 1993, 29, 599 https://doi.org/10.1002/mrm.1910290504
  72. Jun, Y.; Huh, Y.-M.; Choi, J.; Lee, J.-H.; Song, H.-T.; Kim. S.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732 https://doi.org/10.1021/ja0422155
  73. Huh, Y.-M.; Jun, Y.; Song, H.-T.; Kim, S.; Choi, J.-s.; Lee, J.-H.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 12387 https://doi.org/10.1021/ja052337c
  74. Veiseh, O.; Sun, C.; Gunn, J.; Kohler, N.; Gabikian, P.; Lee, D.; Bhattarai, N.; Ellenbogen, R.; Sze, R.; Hallahan, A.; Olson, J.; Zhang, M. Nano Lett. 2005, 5, 1003 https://doi.org/10.1021/nl0502569
  75. Hudziak, R. M.; Lewis, G. D.; Winget, M.; Fendly, B. M.; Shepard, H. M.; Ullrich, A. Mol. Cell Biol. 1989, 9, 1165 https://doi.org/10.1128/MCB.9.3.1165

Cited by

  1. -relaxation Time Changes According to the Morphological Characteristics of Gold Nanoparticles (GNPs) vol.15, pp.1, 2011, https://doi.org/10.13104/jksmrm.2011.15.1.48
  2. Biological Toxicity Changes of Mercaptoacetic Acid and Mercaptopropionic Acid Upon Coordination onto ZnS:Mn Nanocrystal vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.657
  3. Syntheses and Characterizations of Serine and Threonine Capped Water-Dispersible ZnS:Mn Nanocrystals and Comparison Study of Toxicity Effects on the growth of E. coli by the Methionine, Serine, Threonine, and Valine Capped ZnS:Mn Nanocrystals vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1741
  4. bacteria vol.28, pp.4, 2013, https://doi.org/10.1002/bio.2477
  5. Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1169
  6. Nanocrystals and Their Biomedical Applications vol.37, pp.44, 2006, https://doi.org/10.1002/chin.200644215
  7. Colloidal Strategies for Preparing Oxide-Based Hybrid Nanocrystals vol.2008, pp.6, 2008, https://doi.org/10.1002/ejic.200701047
  8. Development of NIR Emitted CdTe Quantum Dots by Concentration Control Method vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1637
  9. Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2279
  10. Electron Crystallography of CaMoO4 Using High Voltage Electron Microscopy vol.28, pp.3, 2006, https://doi.org/10.5012/bkcs.2007.28.3.391
  11. Syntheses and Optical Properties of the Water-Dispersible ZnS:Mn Nanocrystals Surface Capped by L-Aminoacid Ligands: Arginine, Cysteine, Histidine, and Methionine vol.28, pp.7, 2006, https://doi.org/10.5012/bkcs.2007.28.7.1091
  12. Reaction Temperature Dependent Formations of the Zero- and One-Dimensional ZnS:Mn Nanocrystals vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.467
  13. Synthesis and Surface Characterization by Raman Spectroscopy of Water-Dispersible ZnS:Mn Nanocrystals Capped with Mercaptoacetic Acid vol.29, pp.6, 2006, https://doi.org/10.5012/bkcs.2008.29.6.1247
  14. Electrochemical detection of trace amount of arsenic(III) at glassy carbon electrode modified with cobalt oxide nanoparticles vol.129, pp.1, 2006, https://doi.org/10.1016/j.snb.2007.08.017
  15. 다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구 vol.53, pp.6, 2006, https://doi.org/10.5012/jkcs.2009.53.6.677
  16. 다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구 vol.53, pp.6, 2006, https://doi.org/10.5012/jkcs.2009.53.6.677
  17. 나노물질의 의학분야 활용 및 전망 vol.20, pp.1, 2006, https://doi.org/10.35420/jcohns.2009.20.1.119
  18. Differential Effects of Cysteine and Histidine-Capped ZnS:Mn Nanocrystals on Escherichia coli and Human Cells vol.32, pp.1, 2006, https://doi.org/10.5012/bkcs.2011.32.1.53
  19. Sol-gel foam based Cr(III)-Sn(IV) doped indium oxide: characterizations of morphological, structural and magnetic properties vol.3, pp.30, 2006, https://doi.org/10.1039/c3ra40331a
  20. White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn vol.35, pp.1, 2006, https://doi.org/10.5012/bkcs.2014.35.1.189
  21. Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications vol.10, pp.None, 2006, https://doi.org/10.3762/bjnano.10.207
  22. SPEEK/ZnO Nanocomposite Modified Gold Electrode for Electrochemical Detection of Dopamine vol.32, pp.12, 2006, https://doi.org/10.1002/elan.202060210