DOI QR코드

DOI QR Code

Immobilization of Horseradish Peroxidase to Electrochemically Deposited Gold-Nanoparticles on Glassy Carbon Electrode for Determination of H2O2

  • Ryoo, Hyun-woo (Department of Chemistry Education, Seoul National University) ;
  • Kim, You-sung (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Lee, Jung-hyun (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Shin, Woon-sup (Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Myung, No-seung (Department of Applied Chemistry, Konkuk University) ;
  • Hong, Hun-Gi (Department of Chemistry Education, Seoul National University)
  • Published : 2006.05.20

Abstract

A new approach to fabricate an enzyme electrode was described based on the immobilization of horseradish peroxidase (HRP) on dithiobis-N-succinimidyl propionate (DTSP) self-assembled monolayer (SAM) formed on gold-nanoparticles (Au-NPs) which were electrochemically deposited onto glassy carbon electrode (GCE) surface. The overall surface area and average size of Au-NPs could be controlled by varying deposition time and were examined by Field Emission-Scanning Electron Microscope (FE-SEM). The $O_2$ reduction capability of the surface demonstrated that Au-NPs were thermodynamically stable enough to stay on GCE surface. The immobilized HRP electrode based on Au-NPs/GCE presented faster, more stable and sensitive amperometric response in the reduction of hydrogen peroxide than a HRP immobilized on DTSP/gold plate electrode not containing Au-NPs. The effects of operating potential, mediator concentration, and pH of buffer electrolyte solution on the performance of the HRP biosensor were investigated. In the optimized experimental conditions, the HRP immobilized GCE incorporating smaller-sized Au-NPs showed higher electrocatalytic activity due to the high surface area to volume ratio of Au-NPs in the biosensor. The HRP electrode showed a linear response to $H_2O_2$ in the concentration range of 1.4 $\mu$M-3.1 mM. The apparent Michaelis-Menten constant ($K _M\; ^{app}$) determined for the immobilized HRP electrodes showed a trend to be decreased by decreasing size of Au-NPs electrodeposited onto GCE.

Keywords

References

  1. Willner, I.; Katz, E. Angew. Chem. Int. Ed.2000, 39, 1180 https://doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1180::AID-ANIE1180>3.0.CO;2-E
  2. Armstrong, F. A.; Wilson, G. S. Electrochim. Acta 2000, 46, 2623
  3. Yoon, K.-J.; Kwon H.-S.; Lee, B.-G. Bull. Korean Chem.Soc.2005, 49, 325 https://doi.org/10.5012/jkcs.2005.49.3.325
  4. Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F. D.; Ruzgas,T.; Gazaryan, I. Anal. Chim. Acta 1999, 400, 91 https://doi.org/10.1016/S0003-2670(99)00610-8
  5. Ruzgas, T.; Elisabeth, C.; Emneus, J.; Gorton, L.; Marko-Varga,G. Anal. Chim. Acta 1996, 330, 123 https://doi.org/10.1016/0003-2670(96)00169-9
  6. Crumbliss, A. L.; Perine, S. C.; Stonehuerner, J.; Tubergen, K. R.;Zhao, J.; Henkens, R. W.; O'Daly, J. P. Biotechnol. Bioeng. 1992, 40, 483 https://doi.org/10.1002/bit.260400406
  7. Zhao, J.; Henkens, R. W.; Stonehuerner, J.; O'Daly, J. P.;Crumbliss, A. L. J. Electroanal. Chem. 1992, 327, 109 https://doi.org/10.1016/0022-0728(92)80140-Y
  8. Xiao, Y.; Ju, H.-X.; Chen, H.-Y. Anal. Chim. Acta 1999, 391, 73 https://doi.org/10.1016/S0003-2670(99)00196-8
  9. Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S. Anal. Chem.2002, 74, 2217 https://doi.org/10.1021/ac011116w
  10. Lei, C.-X.; Hu, S.-Q.; Shen, G.-L.; Yu, R.-Q. Talanta 2003, 59, 981 https://doi.org/10.1016/S0039-9140(02)00641-0
  11. Lei, C.-X.; Wang, H.; Shen, G.-L.; Yu, R.-Q. Electroanal. 2004, 16, 736 https://doi.org/10.1002/elan.200302877
  12. Ulman, A. An Introduction to Ultrathin Organic Films fromLangmuir-Blodgett to Self-Assembly; Academic Press: New York,1991
  13. Finot, M. F.; Braybrook, G. D.; McDermott, M. T. J. Electroanal. Chem. 1999, 466, 234 https://doi.org/10.1016/S0022-0728(99)00154-0
  14. Finot, M. F.; McDermott, M. T. J. Electroanal. Chem. 2000, 488, 125 https://doi.org/10.1016/S0022-0728(00)00201-1
  15. Nelson, D. P.; Kiesov, L. A. Anal. Biochem. 1972, 49, 474 https://doi.org/10.1016/0003-2697(72)90451-4
  16. Creager, S. E.; Hockett, L. A.; Rowe, G. K. Langmuir 1992, 8, 854 https://doi.org/10.1021/la00039a020
  17. Darder, M.; Takada, K.; Pariente, F.; Lorenzo, E.; Abruna, H. D.Anal. Chem. 1999, 71, 5530 https://doi.org/10.1021/ac990759x
  18. El-Deab, M. S.; Okajima, T.; Ohsaka, T. J. Electrochem. Soc.2003, 150, A851 https://doi.org/10.1149/1.1574806
  19. Kozlowska, H. A.; Conway, B. E.; Hamelin, A.; Stoicoviciu, L. J.Electroanal. Chem. Interfacial Electrochem.1987, 228, 429 https://doi.org/10.1016/0022-0728(87)80122-5
  20. Oungpipat, W.; Alexander, P. W.; Southwell-Keely, P. Anal. Chim. Acta 1995, 309, 35 https://doi.org/10.1016/0003-2670(95)00066-9
  21. Maehly, A. C. Plant Peroxidases: Methods in Enzymology;Academic Press: New York, 1995; vol. 11, p 807
  22. Kamin, R. A.; Wilson, G. S. Anal. Chem. 1980, 52, 1198 https://doi.org/10.1021/ac50058a010
  23. Liu, S.-Q.; Ju, H.-X. Anal. Biochem. 2002, 307, 110 https://doi.org/10.1016/S0003-2697(02)00014-3
  24. Xu, Y.; Peng, W.; Liu, X.; Li, G. Biosens. Bioelectron 2004, 20, 533 https://doi.org/10.1016/j.bios.2004.02.017
  25. Doron, A.; Katz, E.; Willner, I. Langmuir 1995, 11, 1313 https://doi.org/10.1021/la00004a044

Cited by

  1. Electrocatalytic Reduction of Hydrogen Peroxide on Palladium-Gold Codeposits on Glassy Carbon: Applications to the Design of Interference-Free Glucose Biosensor vol.2011, pp.2090-3537, 2011, https://doi.org/10.4061/2011/697698
  2. An anthraquinone moiety/cysteamine functionalized-gold nanoparticle/chitosan based nanostructured composite for the electroanalytical detection of dissolved oxygen within aqueous media vol.6, pp.21, 2014, https://doi.org/10.1039/C4AY01207K
  3. Electrochemical sandwich immunoassay for the prostate specific antigen using a polyclonal antibody conjugated to thionine and horseradish peroxidase vol.184, pp.8, 2017, https://doi.org/10.1007/s00604-017-2284-2
  4. Hydrogen Peroxide Biosensor based on the Immobilization of Horseradish Peroxidase onto a Gold Nanoparticles-Adsorbed Poly(brilliant cresyl blue) Film vol.162, pp.3, 2015, https://doi.org/10.1149/2.0211503jes
  5. A Polymer Interface for Varying Electron Transfer Rate with Electrochemically Formed Gold Nanoparticles from Spontaneously Incorporated Tetrachloroaurate(III) Ions vol.28, pp.10, 2006, https://doi.org/10.5012/bkcs.2007.28.10.1683
  6. Electrochemical Immunosensing of GOx-labeled CRP Antigen on Capture Antibody Monolayer Immobilized on Calixcrown-5 SAMs vol.28, pp.10, 2006, https://doi.org/10.5012/bkcs.2007.28.10.1792
  7. Monitoring of the Transfer of Tetrachloroaurate(III) Ions by Thin-layer Electrochemistry and Electrochemical Deposition of Metallic Gold over a Graphite Electrode vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1983
  8. Amperometric mediatorless hydrogen peroxide sensor with horseradish peroxidase encapsulated in peptide nanotubes vol.7, pp.None, 2006, https://doi.org/10.1016/j.sbsr.2015.12.003
  9. Fabrication of Immunosensor Based on Polyaniline, Fullerene‐C60 and Palladium Nanoparticles Nanocomposite: An Electrochemical Detection Tool for Prostate Cancer vol.32, pp.7, 2006, https://doi.org/10.1002/elan.201900659