DOI QR코드

DOI QR Code

Determination of Copper in Black, Red Pepper and the Waste Water Samples by a Highly Selective Sensitive Cu(II) Microelectrode Based on a New Hexadentates Schiff's Base

  • Norouzi, Parviz (Center of Excellence in Electrochemistry (CEE), Faculty of Chemistry, University of Tehran) ;
  • Ganjali, Mohammad Reza (Center of Excellence in Electrochemistry (CEE), Faculty of Chemistry, University of Tehran) ;
  • Faridbod, Farnoush (Center of Excellence in Electrochemistry (CEE), Faculty of Chemistry, University of Tehran) ;
  • Salavati-Niasari, Masoud (Department of Chemistry, Kashan University)
  • Published : 2006.09.20

Abstract

A $Cu^{2+}$ ion-selective membrane microelectrode has been fabricated from poly vinyl chloride (PVC) matrix membrane containing a new symmetrical hexadentate Schiff,s base 2-{1-(E)-2-((Z)-2-{(E)-2-[(Z)-1-(2-hydroxyphenyl)ethylidene]hydrazono}-1-methylpropylidene)hydrazono]ethyl}phenol (HDNOS) as a neutral carrier, Potassium tetrakis(4-chlorophenyl) borate (KTpClPB) as an anionic excluder and o-nitrophenyloctyl ether (NPOE) as a plasticizing solvent mediator. The microelectrode displays linear potential response in the concentration range of $1.0\;{\times}\;10^{-5}-1.0\;{\times}\;10^{-11}$ M of $Cu^{2+}$. The microelectrode exhibits a nice Nernstian slope of 25.9 ${\pm}$ 0.3 mV $decade^{-1}$ in the pH range of 3.1-8.1. The sensor has a relatively short response time in whole concentration ranges ($\sim$5 s). The detection limit of proposed sensor is $5.0\;{\times}\;10^{-12}$ M (320 pg/L), and it can be used over a period of eight weeks. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of $Cu^{2+}$ with EDTA. The proposed membrane electrode was used for the direct determining of $Cu^{2+}$ content in black and red pepper, and in waste water samples.

Keywords

References

  1. Marston, H. R. Physiol. Rev. 1952, 32, 56
  2. Greenwood, N. N.; Earnshow, A. Chemistry of Elements; Pergaman Press: New York, 1984
  3. Zamani, H. A.; Rajadzadeh, Gh.; Ganjali, M. R.; Mola-Khatami, S. Electroanalysis 2005, 17, 2260 https://doi.org/10.1002/elan.200503356
  4. Kamata, S.; Yamasaki, Y.; Higo, M.; Bhale, A.; Fukanaga, Y. Analyst 1988, 113, 45 https://doi.org/10.1039/an9881300045
  5. Ganjali, M. R.; Golmohammadi, M.; Yousefi, M.; Norouzi, P.; Salavati-Niasari, M.; Javanbakht, M. Anal. Sci. 2003, 19, 223 https://doi.org/10.2116/analsci.19.223
  6. Ganjali, M. R.; Emami, M.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2002, 23, 1394 https://doi.org/10.5012/bkcs.2002.23.10.1394
  7. Shamsipur, M.; Avanes, A.; Javanbakht, M.; Ganjali, M. R.; Sharghi, H. Anal. Sci. 2002, 18, 875 https://doi.org/10.2116/analsci.18.875
  8. Casabo, J.; Mestres, L.; Escriche, L.; Texidor, F.; Perez-Jimenez, C. Chem. Soc. Dalton Trans. 1991, 1961
  9. Poursaberi, T.; Hajiagha-Babaei, L.; Yousefi, M.; Rouhani, S.; Shamsipur, M.; Kargar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Ganjali, M. R. Electroanalysis 2001, 13, 1513 https://doi.org/10.1002/1521-4109(200112)13:18<1513::AID-ELAN1513>3.0.CO;2-X
  10. Shamsipur, M.; Javanbakht, M.; Mousavi, M. F.; Ganjali, M. R.; Lippolis, V.; Garau, A.; Tei, L. Talanta 2001, 55, 1047 https://doi.org/10.1016/S0039-9140(01)00434-9
  11. Ganjali, M. R.; Poursaberi, T.; Babaei, L. H. A.; Rouhani, M.; Yousefi, M.; Kargar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Shamsipur, M. Anal. Chim. Acta 2001, 440, 81 https://doi.org/10.1016/S0003-2670(01)01051-0
  12. Kamata, S.; Murata, H.; Kubo, Y.; Bhale, A. Analyst 1989, 114, 1029 https://doi.org/10.1039/an9891401029
  13. Bazooka, Z. Analyst 1988, 113, 1803 https://doi.org/10.1039/an9881301803
  14. Cobber, P. L. H. M.; Gherkin, R. J. M.; Boomer, J. B.; Barged, P.; Vroom, W.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 114, 10573
  15. Shamsipur, M.; Rouhani, S.; Ganjali, M. R.; Eshghi, H.; Sharghi, H. Microchem. J. 1999, 63, 202 https://doi.org/10.1006/mchj.1999.1784
  16. Ren, K. Talanta 1989, 36, 767 https://doi.org/10.1016/0039-9140(89)80146-8
  17. Ganjali, M. R.; Daftari, A.; Norouzi, P.; Salavati-Niasari, M. Anal. Lett. 2003, 36, 1511 https://doi.org/10.1081/AL-120021533
  18. Ganjali, M. R.; Khoshdan, N.; Hashemi, O. R.; Sajjadi, S. A. S. Polish. J. Chem. 2000, 74, 1389
  19. Ganjali, M. R.; Zargazi, M. H.; Mohajeri, A. Polish J. Chem. 2001, 75, 743
  20. Teixeria, M. F. S.; Fatibello-Filho, O. J. Braz. Chem. Soc. 1996, 7, 233 https://doi.org/10.5935/0103-5053.19960037
  21. Teixeria, M. F. S.; Fatibello-Filho, O.; Ramos, L. A. Quim. Nova 2005, 28, 817 https://doi.org/10.1590/S0100-40422005000500017
  22. Zamani, H. A.; Abedini-Torghabeh, J.; Ganjali, M. R. Electroanalysis 2006, 18, 888 https://doi.org/10.1002/elan.200503472
  23. Ganjali, M. R.; Mirnaghi, F. S.; Norouzi, P.; Adib, M. Sens. Actuators B 2006, 115, 374 https://doi.org/10.1016/j.snb.2005.09.020
  24. Ganjali, M. R.; Norouzi, P.; Shamsolahrari, L.; Adib, M. Sens. Actuators B 2006, 114, 713 https://doi.org/10.1016/j.snb.2005.06.024
  25. Zamani, H. A.; Abedini-Torghabeh, J.; Ganjali, M. R. Bull. Korean Chem. Soc. 2006, 27, 835 https://doi.org/10.5012/bkcs.2006.27.6.835
  26. Ganjali, M. R.; Daftari, A.; Mizani, F.; Salavati-Niasari, M. Bull. Korean Chem. Soc. 2003, 24, 23 https://doi.org/10.5012/bkcs.2003.24.1.023
  27. Ganjali, M. R.; Norouzi, P.; Faridbod, F. Anal. Chim. Acta 2006, 569, 35 https://doi.org/10.1016/j.aca.2006.03.105
  28. Ganjali, M. R.; Pourjavid, M. R.; Mouradzadegun, K.; Hosseini, M.; Mizani, F. Bull. Korean Chem. Soc. 2003, 24, 1585 https://doi.org/10.5012/bkcs.2003.24.11.1585
  29. Rosatzin, T.; Bakker, E.; Suzuki, K.; Simon, W. Anal. Chim. Acta 1993, 280, 197 https://doi.org/10.1016/0003-2670(93)85122-Z
  30. Ammann, D.; Pretsch, E.; Simom, W.; Lindner, E.; Bezegh, A.; Pongor, E. Anal. Chim. Acta 1985, 171, 119 https://doi.org/10.1016/S0003-2670(00)84189-6
  31. Umezawa, Y.; Umezawa, K.; Sato, H. Pure & Appl. Chem. 1995, 67, 507 https://doi.org/10.1351/pac199567030507
  32. Buck, P. R.; Lindneri, E. Pure & Appl. Chem. 1994, 66, 2527 https://doi.org/10.1351/pac199466122527

Cited by

  1. Schiff's Bases and Crown Ethers as Supramolecular Sensing Materials in the Construction of Potentiometric Membrane Sensors vol.8, pp.3, 2008, https://doi.org/10.3390/s8031645
  2. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  3. Uranyl Microsensor: An Asymmetric Potentiometric Membrane Sensor Based on a New Calix[4]arene vol.43, pp.14, 2010, https://doi.org/10.1080/00032711003698762
  4. Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes vol.41, pp.4, 2011, https://doi.org/10.1080/10408347.2011.589773
  5. Fluorene functionalized nanoporous SBA-15 incorporated into carbon paste electrode for trace copper determination vol.22, pp.6, 2015, https://doi.org/10.1007/s10934-015-0049-z
  6. Novel Screen-Printed All-Solid-State Copper(II)-Selective Electrode for Mobile Environmental Analysis vol.07, pp.07, 2016, https://doi.org/10.4236/ajac.2016.77048
  7. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo)butane-1,3-dione vol.186, pp.2, 2006, https://doi.org/10.1016/j.jhazmat.2010.11.119