DOI QR코드

DOI QR Code

Enhanced Electrochemifluorescence and Reduction Mechanism of Acetoxy Coumarin Derivatives in Acetonitrile Solution

  • Kim, Sung-Hyun (Department of Bio-nano Chemistry, College of Natural Science and Institute of Basic Natural Science, Wonkwang University) ;
  • Jung, Eun-Joo (Department of Bio-nano Chemistry, College of Natural Science and Institute of Basic Natural Science, Wonkwang University) ;
  • So, Eun-Mi (Department of Bio-nano Chemistry, College of Natural Science and Institute of Basic Natural Science, Wonkwang University) ;
  • Shen, Chang-Zhe (Department of Bio-nano Chemistry, College of Natural Science and Institute of Basic Natural Science, Wonkwang University) ;
  • Chun, Hyun-Ja (Department of Bio-nano Chemistry, College of Natural Science and Institute of Basic Natural Science, Wonkwang University) ;
  • Kim, Young-Man (Advanced Analysis Center, Korea Institute of Science and Technology) ;
  • Kim, Il-Kwang (Department of Bio-nano Chemistry, College of Natural Science and Institute of Basic Natural Science, Wonkwang University)
  • Published : 2006.09.20

Abstract

The electrochemical reduction of coumarin, 7-acetoxy-4-methyl coumarin (AMC), and 7-acetoxy-4-bromomethyl coumarin (ABMC), in 0.1 M tetraethyl ammonium perchlorate/acetonitrile solution was carried out by direct current, differential pulse polarography, cyclic voltammetry, and controlled potential coulometry. The electrochemical reduction of ABMC was proceeded through three steps of electron transfer coupled with the chemical reactions. The color of solution was changed to yellow when the carbonyl group was reduced during 2nd step (-1.8 volts) and independented with cleavage of bromo group. Highest fluorescence intensity showed when the electrochemical reduction of AMC was controlled at near the potential (-2.3 volts vs. Ag/AgCl).

Keywords

References

  1. Brace, L. Amer. J. Medical Technology 1983, 49, 457
  2. Lake, B. G. Archieves of Toxicology 1984, 7, 16 https://doi.org/10.1007/978-3-642-69132-4_2
  3. Yuen, S. H. Analyst 1978, 103, 842 https://doi.org/10.1039/an9780300842
  4. Raw, G. R. Colaborative International Pesticides Analytical Council (CIPAC); Heffer, W. & Sons Ltd: Cambridge, U.K., 1970; Vol 1, p 696
  5. Salaman, M. H. J. Cancer 1967, 9, 177
  6. Hogan, E. C. Fed. Cosmet. Toxicol. 1967, 5, 141 https://doi.org/10.1016/S0015-6264(67)82961-4
  7. Moylan, C. R. J. Phys. Chem. 1994, 98, 13513 https://doi.org/10.1021/j100064a038
  8. Zhang, F. G.; Yu, C. L. J. Appl. Phys. 1987, 62, 49 https://doi.org/10.1063/1.339158
  9. Jones, G. II; Rahman, M. A. J. Phys. Chem. 1994, 98, 13028 https://doi.org/10.1021/j100100a035
  10. Nemkovich, N. A.; Reis, H.; Baumann, W. J. of Luminescence 1997, 71, 255 https://doi.org/10.1016/S0022-2313(97)00098-7
  11. Gautier-Thianche, E.; Sentein, C.; Nunzi, J. M.; Lorin, A.; Denis, C.; Raimond, P. Synthetic Metals 1997, 91, 323 https://doi.org/10.1016/S0379-6779(97)04044-7
  12. Justin Thomas, K. R.; Lin, J. T.; Tao, Y. T.; Ko, C. W. J. Am. Chem. Soc. 2001, 123, 9404 https://doi.org/10.1021/ja010819s
  13. Chen, C. H.; Tang, C. W. Applied Physics Letters 2001, 79, 3711 https://doi.org/10.1063/1.1420583
  14. Kang, S. C.; Oh, S. I.; Kim, K. J. Bull. Korean Chem. Soc. 1990, 11(6), 505
  15. Huang, Y.; Lu, Z. Y.; Peng, Q.; Xie, R. G.; Xie, M. G.; Peng, J. B.; Cao, Y. J. of Materials Science 2005, 40, 601 https://doi.org/10.1007/s10853-005-6295-8
  16. Mal, N. K.; Fugiwara, M.; Tanaka, Y. Nature 2003, 421, 350 https://doi.org/10.1038/nature01362
  17. Wang, Z. S. J. Phys. Chem. B 2005, 109, 3907 https://doi.org/10.1021/jp044851v
  18. Harle, A. J.; Lyons, L. E. J. Chem. Soc. 1950, 1575 https://doi.org/10.1039/jr9500001575
  19. Capka, O.; Czech. C. Chem. Commun. 1950, 15, 965
  20. Zuman, P. Chem. Listy 1954, 48, 94
  21. Zuman, P. Organic Polarographic Analysis; Pergamon Press: New York, 1964; p 251
  22. Zuman, P. Substituent Effects in Organic Polarography; Plenum Press: New York, 1967; p 165
  23. Gourley, R. N.; Grimshaw, J.; Miller, P. G. J. Chem. Soc. (C) 1970, 2318
  24. Reddy, B. O.; Reddy, A. V.; Raju, K. M.; Rao, A. K. J. Electrochem. Soc. India 1989, 35, 319
  25. Partridge, L. K.; Tansley, A. C.; Porter, A. S. Electrochemical Acta 1966, 11, 517 https://doi.org/10.1016/0013-4686(66)80028-2
  26. Bond, A. M.; Thomas, F. G. Langmuir 1988, 4, 341 https://doi.org/10.1021/la00080a016
  27. Helin, M.; Jiang, Q.; Ketamo, H.; Hakansson, M.; Spehar, A. M.; Kulmala, S.; Ala-Kleme, T. Electrochimica Acta 2005, 51, 725 https://doi.org/10.1016/j.electacta.2005.05.042
  28. Carrazon, J. M. P.; Vergara, A. G.; Garcia, A. J. R.; Diez, L. M. P. Anal. Chim. Acta 1989, 216, 231 https://doi.org/10.1016/S0003-2670(00)82010-3
  29. Dempsey, E.; O'Sullivan, C.; Smyth, M. R.; Egan, D.; O'kennedy, R.; Wang, J. J. Pharm. Biomed. Anal. 1993, 11, 443 https://doi.org/10.1016/0731-7085(93)80155-T
  30. Dempsey, E.; O'Sullivan, C.; Smyth, M. R.; Egan, D.; O'kennedy, R.; Wang, J. Analyst 1993, 118, 411 https://doi.org/10.1039/an9931800411
  31. Wu, Q.; Dewald, H. D. Electroanalysis 2001, 13, 45 https://doi.org/10.1002/1521-4109(200101)13:1<45::AID-ELAN45>3.0.CO;2-Y
  32. Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals; 3rd. Ed.; Pergamon Press: Oxford, 1988; p 69
  33. Zuman, P. The Elucidation of Organic Electrode Processess; Acdemic Press: New York, 1969; p 7

Cited by

  1. Electrochemically assisted deposition of biodegradable polymer nanoparticles/sol–gel thin films vol.21, pp.32, 2011, https://doi.org/10.1039/c1jm11262g
  2. Electroreductive Dimerization of Coumarin and Coumarin Analogues at Carbon Cathodes vol.80, pp.1, 2015, https://doi.org/10.1021/jo502272g
  3. Electroreductive Intermolecular Coupling of Coumarins with Benzophenones: Synthesis of 4-(2-Hydroxyphenyl)-5,5-diaryl-γ-butyrolactones, 2-(2,2-Diaryl-2,3-dihydrobenzofuran-3-yl)acetic Acids, and 4-(Diarylmethyl)coumarins vol.81, pp.22, 2016, https://doi.org/10.1021/acs.joc.6b02056
  4. An Environmentally Benign Synthesis of Pyrimidine-Fused Coumarin and Triazole Motifs via a Catalytic Domino Reaction vol.49, pp.6, 2017, https://doi.org/10.1080/00304948.2017.1380495
  5. Electrosynthesis of 4-Methylcoumarin via Cobalt(I)-Catalyzed Reduction of 2-Acetylphenyl 2-Chloroacetate or 2-Acetylphenyl 2,2-Dichloroacetate vol.154, pp.12, 2007, https://doi.org/10.1149/1.2789400
  6. Electrochemical Reduction of 4-(Bromomethyl)-2H-chromen-2-ones at Carbon Cathodes in Dimethylformamide vol.155, pp.8, 2008, https://doi.org/10.1149/1.2926618
  7. A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-quinolone Derivatives vol.28, pp.7, 2007, https://doi.org/10.5012/bkcs.2007.28.7.1203
  8. Reduction of 4-(bromomethyl)-2-oxo-2H-chromen-7-yl acetate at carbon cathodes in dimethylformamide and acetonitrile: Lifetime of the electrogenerated radical–anion vol.654, pp.1, 2006, https://doi.org/10.1016/j.jelechem.2011.01.033
  9. Construction of a CF3-Containing Benzofurofuranone Skeleton from Coumarins via Reductive Coupling and Acid-Mediated Ring Contraction vol.84, pp.18, 2006, https://doi.org/10.1021/acs.joc.9b01439