DOI QR코드

DOI QR Code

The Solid Phase Extraction of Phenol and Chlorophenols by the Chemically Modified Polymeric Adsorbents with Porphyrins

  • Jung, Min-Woo (Department of Chemistry, Graduate School, Yonsei University) ;
  • Kim, Ki-Pal (Department of Chemistry, Graduate School, Yonsei University) ;
  • Cho, Byung-Yun (Department of Chemistry, Graduate School, Yonsei University) ;
  • Paeng, Insook R. (Department of Chemistry, Seoul Women’s University) ;
  • Lee, Dai-Woon (Department of Chemistry, Graduate School, Yonsei University) ;
  • Park, Young-Hun (Department of Chemistry, Graduate School, Yonsei University) ;
  • Paeng, Ki-Jung (Department of Chemistry, Graduate School, Yonsei University)
  • Published : 2006.01.20

Abstract

The commercially available Amberlite XAD-2 and XAD-4 resins were modified with macrocyclic protoporphyrin IX (PPIX) or tetrakis(p-carboxyphenyl) porphyrin (TCPP) to enhance the adsorption capacity for phenol and chlorophenols. The chemically modified polymeric adsorbents (XAD-2+PPIX, XAD-2+TCPP, XAD-4+PPIX, and XAD-4+TCPP) were applied to the solid phase extraction as an adsorbent material for the preconcentration of phenol and chlorophenols in environmental waters. Generally, the synthesized adsorbents showed higher recoveries than underivatized adsorbents, XAD-2 and XAD-4, without matrix interferences. Especially, XAD-4+PPIX showed more than 90% recoveries for all compounds used in this study including hydrophilic phenol. The major factor for the increase of the adsorption capacity was the increase of $\pi$-$\pi$ interaction between adsorbents and samples due to the introduction of the porphyrin molecule. However, the breakthrough volumes and recovery values of the XADs+TCPP columns were slightly decreased for the bulky chlorophenols such as TCP and PCP. Using molecular mechanics methods, the structures of TCPP and PPIX were compared with that of porphine, the parent molecule of porphyrin. Four bulky p-carboxyphenyl groups of TCPP were torsional each other, thus the molecular plane of TCPP were not on the same level. In conclusion, the decrease of breakthrough volumes and recovery values of XADs+TCPP columns for bulky phenols can be explained by the steric hindrance of the $\pi$-$\pi$ interaction between porphyrin plane and the phenols.

Keywords

References

  1. Jaoui, M.; Luszczyk, M.; Rogalski, M. J. Chem. Eng. Data 1999, 44, 1269 https://doi.org/10.1021/je990035i
  2. Kitunen, V. H.; Ualo, R. J.; Salkinoja-Salonen, M. S. Environ. Sci. Technol. 1986, 21, 96
  3. Lee, M.-R.; Yeh, Y.-C.; Hsiang, W.-S.; Hwang, B.-H. J. Chromatogr. A 1998, 806, 317 https://doi.org/10.1016/S0021-9673(98)00075-2
  4. Rodriguez, I.; Mejuto, M. C.; Bollain, M. H.; Cela, R. J. Chromatogr. A 1997, 786, 285 https://doi.org/10.1016/S0021-9673(97)00579-7
  5. Rodriguez, I.; Cela, R. Trends Anal. Chem. 1997, 16, 463 https://doi.org/10.1016/S0165-9936(97)00060-5
  6. Wegman, R. C. C.; Hofstee, A. W. M. Water Res. 1979, 13, 651 https://doi.org/10.1016/0043-1354(79)90015-0
  7. Compilation of Sampling Analysis Methods; Keith, L. H., Ed.; U.S. Environmental Protection Agency: Boca Raton, FL, 1991
  8. Directiva 80/77/CE 15-7-1990, Diario Oficial de las Comunidades Europeas, 30-8-1990, European Community, Brussels, 1990
  9. Jung, M.-W.; Ahn, K.-H.; Lee, Y.; Kim, K.-P.; Paeng, I. R.; Rhee, J.-S.; Park, J. T.; Paeng, K.-J. J. Chromatogr. A 2001, 917, 87 https://doi.org/10.1016/S0021-9673(01)00673-2
  10. Kim, D.-G.; Jung, M.-W.; Paeng, I. R.; Rhee, J.-S.; Paeng, K.-J. Microchem. J. 1999, 63, 134 https://doi.org/10.1006/mchj.1999.1775
  11. Thurman, E. M.; Mills, M. S. Solid Phase Extraction-Principles and Practice; Wiley: New York, 1998
  12. Simpson, N. J. K. Solid Phase Extraction-Principles, Strategies and Applications; Marcel Dekker: New York, 1998
  13. Puig, D.; Barcelo, D. Chromatographia 1995, 40, 435 https://doi.org/10.1007/BF02269909
  14. McLaughlin, R. A.; Johnson, B. S. J. Chromatogr. A 1997, 790, 161 https://doi.org/10.1016/S0021-9673(97)00717-6
  15. Junker-Buchheit, A.; Witzenbacher, M. J. Chromatogr. A 1996, 737, 25 https://doi.org/10.1016/0021-9673(95)01339-3
  16. Aguilar, C.; Borrull, F.; Marce, R. M. J. Chromatogr. A 1997, 771, 221 https://doi.org/10.1016/S0021-9673(97)00091-5
  17. Albanis, T. A.; Hela, D. G.; Sakellarides, T. M.; Konstantinou, I. K. J. Chromatogr. A 1998, 823, 59 https://doi.org/10.1016/S0021-9673(98)00304-5
  18. Shojania, S.; Oleschuk, R. D.; McComb, M. E.; Gesser, H. D.; Chow, A. Talanta 1999, 50, 193 https://doi.org/10.1016/S0039-9140(99)00120-4
  19. Okolo, B.; Park, C.; Keane, M. A. J. Colloid Interface Sci. 2000, 226, 308 https://doi.org/10.1006/jcis.2000.6796
  20. Rudaz, S.; Haerdi, W.; Veuthey, J. L. Chromatographia 1997, 44, 283 https://doi.org/10.1007/BF02466396
  21. Li, J.; Fritz, S. J. Chromatogr. A 1998, 793, 231 https://doi.org/10.1016/S0021-9673(97)00905-9
  22. Bjarnason, B.; Chimuka, L.; Ramstrom, O. Anal. Chem. 1999, 71, 2152 https://doi.org/10.1021/ac9810314
  23. Masque, N.; Marce, R. M.; Borrull, F.; Cormack, P. A. G.; Sherrington, D. C. Anal. Chem. 2000, 72, 4122 https://doi.org/10.1021/ac0000628
  24. Jauregui, O.; Galceran, M. T. Anal. Chim. Acta 1997, 340, 191 https://doi.org/10.1016/S0003-2670(96)00504-1
  25. Masque, N.; Marce, R. M.; Borrull, F. Chromatographia 1998, 48, 231 https://doi.org/10.1007/BF02467676

Cited by

  1. Development and validation of a rapid and sensitive gas chromatographic method for the analysis of some phenolic compounds in vegetable oils vol.6, pp.14, 2014, https://doi.org/10.1039/c4ay00623b
  2. Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer vol.28, pp.2, 2006, https://doi.org/10.5012/bkcs.2007.28.2.276
  3. Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines vol.152, pp.1, 2006, https://doi.org/10.1016/j.jhazmat.2007.06.096
  4. Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties vol.31, pp.6, 2006, https://doi.org/10.5012/bkcs.2010.31.6.1638