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A many-body master equation is constructed by incorporating stochastic terms responsible tor chemical
reactions into the many-body Smoluchowski equation. Two forms of Langevin-type of memory equations
describing the time evolution of dvnamical variables under the influence of time-independent perturbation with
an arbitrary intensity are derived. One form is convenient in obtaining the dynamics approaching the steady-
state attained by the perturbation and the other in describing the fluctuation dynamics at the steady-state and
consequently in obtaining the linear response of the system at the steady-state to time-dependent perturbation.
In both cases, the kinetics of statistical averages of variables is tound to be obtained by analyzing the dynamics

of time-correlation functions of the variables.
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Introduction

Chemical reactions in liquid occur under the influence of
diffusive motion of reactants. Since the pioneering work was
done by Smoluchowski, many theoretical studies have been
proposed to explain the effects of molecular diffusion on the
rates of chemical reactions.

One of most popular approaches is based on reduced
distribution functions of reactants.! One-particle reduced
distribution function is introduced in this method. Dynamics
of the one-particle reduced distribution function is coupled
to two-particle reduced distribution function vig time-
dependent rate coefficients which is determined by the
dynamics of two-particle reduced distribution function. Such
hierarchical structure extends to N-particle distribution
function and solving the hierarchical problem is equivalent
to solving the N-particle equations of motion. Thus in order
to make the problem tractable, one should truncate the
hierarchy at a certain level of reduced distribution function.
Such truncation procedure often brings some uncontrollable
errors in the framework.

Another popular approach is to employ memory kernel in
the rate equation for one-particle reduced distribution function
instead of time-dependent rate coefficient. The former is
non-local in time while the latter is local. Examples which
have been known powerful in a few cases of reactions
include the integral encounter theory,” the modified
encounter theory,” the memory equation approach developed
by Yang, Lee, and Shin,* the many-particle kernel theory,®®
the relaxation time approximation,' and the unified
Smoluchowski approximation.' Although the details of
various forms of the memory equation approach are diverse,
theoretical basis for the equations with time-nonlocal
memory kernel may be found in the framework developed
by Mori to derive the generalized Langevin equation for the
motion of Brownian particle.’

In this paper. we introduce a many-body reaction-

Smoluchowski equation which describes the stochastic
processes of microscopic chemical reactions as well as
diffusive motion of reactants. From the reaction-
Smoluchowski equation, using Mori’s projection operator
technique, we derive two forms of memory equations for the
time-evolution of density fields of reactants under time-
independent perturbation. One form is suitable for obtaining
the Kinetics approaching the steady-state to be attained by
continuous action of the perturbation on the system in
equilibrium state. The other form is suitable for obtaining
the fluctuation dynamics of the density fields at the steady-
state. Attributed to the linear response theory, this equation
can be utilized to determine the Kinetics following time-
dependent perturbation acted on the steady-state or on the
equilibrium state.

Reactive Many-Body Smoluchowski Equation

We introduce a many-body probability distribution function
olar, gy 8, -, G 1) that N molecules are found,
respectively, at gy, ', g positions and their chemical species
6, *, Gv at time 7. A set of these dynamical variables is
compactly denoted by I. Due to the molecular motion
caused by systematic intermolecular interaction and/or by
incessant random collisions with solvents, the probability
distribution function changes with time. In this case, the
evolution equation for p(qi, =, gx; 8, -, &; 1) is assumed to
satisfy the many-body Smoluchowski equation:

SV, Det VelpTiy ()
i=1

where D is the diffusion constant of the /th molecule and V
represents the potential of mean force in 4T unit with the
Boltzmann constant and 7 the absolute temperature. In
addition to diffusive motion of the molecules, the probability
distribution changes due to chemical reactions. In order to
take into account such processes, we add Kinetic transition
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terms into Eq. (1)
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where T denotes the classical trace implying the integration
over ¢'1. ', ¢'x and the summation over 81, -, @'y, W «
' ) is the time-dependent transition rate for the system to
change from the phase point I'"to I The second and third
terms of the right hand side (RHS) of Eq. (2) represent the
rates of incoming and outgoing transfer of probability
distribution function at the phase point I' resulting from
chemical reactions. The formal solution of Eq. (2} is given in
terms of the for\\ard tim-ordered exponential operator, ¢!,
as oIr) =exp_ 'ds[: (T, s)}peq(l') with the initial
equilibrium dlstubut 1011 function g(T').

Time evolution of the mean value of a set of dynamical
variables A=(A; ~ Ax)’ of the molecular system is obtained
by the ensemble average over the probability distribution
funetion

(&), = [dTAT)AT30). (3)

The subscript 7 on <> denotes an ensemble average over
a distribution at time 7 Inserting the formal solution of
(57 into it, we obtain

(A), = [dTA(T)exp_{ [[dsL(T:is)}p,(T).  (4)

We consider the integral {dTA(I}£L (50 B(C) where 4
and B are arbitrary dynamical variables. Integrating by parts
over the position variables for the Smoluchowski term and
interchanging the dummy variables T and T’ for the
chemical reaction ters, the integral can be rewritten as

J'dl“A(l“)L"’(l‘;t)B(l‘_’} = jdl“ B(I)

[ ﬁv D"V AT+ [l (T T A(F")—A(F’)}]

= Jdl'B(l“) LI:nAID. Q)

Repeatedly applying this equality to the expanded form of
Eq. {4), we obtain

(A), = [d0p,(DIATs) = (A1), ©)

whetre
A(T:r)=exp_{ [[dsL(T3s)A(T) ()
which is the classical Heisenberg picture of the time-
evolution corresponding to the classical Schrédinger picture
of Eq. {4). Here & is the backward time-ordered exponential

operator. { )Lq_ J'dl" Po,() denotes an ensemble average
over the equilibrium distribution g,.
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Dynamics approaching steady-state under time-inde-
pendent perturbation. If the transition rates are rime-
independenr, the time-evolution of the dynamical variables
is simply given, from Eq. (7), by Au(r) = ¢"*A. Here the
subscript ¢ denotes that the Kkinetic operator is time-
independent. We split £y into two parts, equilibrium (L)
and time-independent perturbation (£,) parts. Using Mori’s
projection operator technique, we will derive an evolution
equation for the set of dynamical variables AAu(7) = Au(7) -
<A>,, which describes the time evolution of the variables
under the influence of the perrurbarion.

Differentiating AAy(7) with respect to time, we obtain the
kinetic equation

d
dr

We will consider the dynamical variables which is linear
to the perturbation, ie., L,AA=L,A=FA. Here F is an
excitation matrix which depends on the intensity of the time-
independent perturbation. In this case, Eq. (8) becomes

—AAG{(1) = "L, + L,)AN, ()

C’q

/ . . ,
;—AAO{I) - F MM =L, AN+ F- (A}, (9)

Following Mori's pmcedure 12 we define plO_]Jﬁ'CllOIl operators
Pand Qas PA={A- AAT; Jeq (AA - AA )eq AA and 0=
1 — P. Here the superscript T denotes the transpose of a
vector, Inserting the identity P+ (=1 into the first term of
RHS of Eq. (9), we obtain

DN ~ F-AAGD = Q- A + 4'OL AN+ F-(AY,
(10)

-l
where Q= (£, AN - AAT), - (AA - AATY,.

Inserting P + Q=1 again into the exponent of the second
term of RHS of Eq. (10 and using the operator identity
{4 —-B¥ 15 Bir—s)
e By ds Ae " 77, we can rewrite the
second term as

e“”Q_cquA=yo(z;+ [[dse™ PLon(r-5)  (11)

where }’0(!)—8 QLMAA Inserting Eq. (11) into Eq.
(10) and nolmo that  PrLyy(s)= (Loy(s) AA )é,q
{AA - AA )u, AA . we obtain the kinetic equation with a
memory kernel matrix defined by

bo(1)=-Q8(1) = (Lox(r) - AAT) ;- (AA - AN Yo (12)

as

AANL1) = F- AA(D)
r

=- J’; dsgalr—3) - AAy(s) + yo(1) + F - (Aj,,. (13)

This is the formally exacr expression of the Kinetic
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equation with a memory kemel under ar arbirrary intensiny
of pernirbation. Since the evolution of the memory kemel
matrix is govemed by £,. it should depend on the time-
independent perturbation ( L,) as well as the equilibrium
dynamics of the system (Leq ).

We note here two properties of (7} : orthogonaliny and
randomness. As one can see from its definition, (7} is
projected by the operator Q and it should be onhog,onal to
the vector AA, ie, {(#{(7)-AA }eq (On(r)-AA )eq =
0. In addition, the average of (7} over the initial
equilibrium distribution should be zero as shown below:
(;vo(_;\'))mZ = {. First we expand the exponential operator in
the definition of y,(7) as follows:

7(t)= (1 - QLy — %Q%Qﬁofz - "‘)Q£a<;A~ (14)

The equilibrium average of the first term is zero since
(LA, = [dTp Lo, A= J'dl'ALeqpuI = 0. The last
equality holds owing to the time-invariance of the
equilibrium distribution function in the absence of any
perturbation. The equiliblium averages of the other terms
have the form of {Q(L,,+ £,)Q()),, . Noting that the
equilibrium average of the P-pLOJecteg part of arbitrary
variables must be zero by definition, we get the equalities
(QLog + L)OC = Loy + LIOC D, =( LD,

. As we sho\\ in Appendix, ke :’asf ternt is ze.to it and onlt tf
the Q-projected part of dvnamical vaviables, Q(»). i
uncorrelated with the time-independent perturbarion. In
other words. if the set of the selecred variables A includes all
variables corvelared with the time-independent pernrbarion.
then the equilibrivm ensemble average of % (1} in the
memory equation for the variables is zero and is called
random force rerm. Therefore in order to fully utilize the
memory equation formulation, we should include all
dynamical variables coupled to the time-independent
perturbation in A. When A is an incomplete set where some
variables correlated with the perturbation are missing, Eq.
does not hold and the equilibrium ensemble average of
#a{7) does not vanish.

Since the random foxce term is orthogonal to the vector
AA . we multiply AA” on the RHS of Eq. and take the
average over the equilibrium distribution

{‘—"—F }<AAUm AA%,,

= = [ dsgylr = 5) - (Ahg(s) - AAT),,. (15)
We define a relaxation function matrix in terms of

normalized correlation function

(AA-AATY,.

So(r)= (AAg(r)- AAT) (16)

ey

Kinetics of the time cotrelation function may be studied
by various tools such as the fully renormnalized kinetic theory
developed by Mazenko'™'* and later applied to diffusion
influenced reactions by Yang, Lee, and Shin.>” The time
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correlation function reflects the dynamics occurring under
the time-independent perturbation in the equilibrium
ensemble.

Solving Eq. (13) in the Laplace transform domain, we
obtain the dynamics of AAy{s) in terms of the relaxation
function matrix:

AA(1) = J dtSy(i—1) - [AAXT) + p(D) + F- (A) (1]7
)

Utilizing the randomness of (¢}, the time evolution of
mean value of AA is obtained from Eq. (17)

(BAWD),, = [ d1Se(1) - F(A),, .

As one can see in Eq. (18), the key quantity to predict the
time evolution of mean value of dynamical variables
developing under the influence of the time-independent
perturbation is the time corelation function Sy(s) which
reflects the fluctuation dynamics of equilibrivm ensemble
affected by the perturbation. This relation illustrates a
special case of the fluctuation-dissipation theorem holding
for an arbitrary intensity of perturbation with the particular
linear property £,A = F - A. The formal relation (18) with
r— may be employed in the study of steady-state
kinetics of chemical reaction systems such as the Stem-
Volmer kinetics of fluorescence quenching reaction.'>'¢

Fluctuation dynamics at steady-state. In the previous
section, we derived a formal expression of the memory
equation describing the evolution of dynamical variables
under a time-independent perturbation. As the perturbation
keeps on, the system will approach a non-equilibrium
steady-state. In this subsection, we derive another memory
equation which is convenient for describing the fluctuation
dynamics of the dynamical variables at the steady state. We
consider the deviation of variables: SAy{(7) = Ay{7)— (A,
where (), Idl" £,,(~) with the probability distribution
function at the steady state, p, = lml et P » denotes the
ensemble average at the stead\-state attained at long times
under the influence of the time-independent perturbation.

Differentiating 8A,(7) with respect to time, we obtain the
kinetic equation

(18)

‘—’JAO(zjzeﬁv'_coaA. (19

Now, gleectlon operatc)&s P and Q0 are defined as P4 =
{A-8A Y- (A - SAT 5 - O6A and Q=1 - P, Repeat-
ing Mori's procedure discussed in the previous section with
the new projection operators, we obtain the kinetic equation

Lon(1) == [ dsihlr=s5)- M)+ () (20)
where
ol =—Q8(1) — {LFo(1)- ATy, - (6A - AT .
T = O A
with
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O = (L6 6AT),, - (6A- SATY: .

This is the formally exacr kinetic equation describing the
fluctuation dynamics occurring at the steady-state under the
time-independent perturbation. When £,=0 (no time-
independent perturbation), Egs. {13) and {(20) become
identical as it should be.

As one can see from its definition, #,(7} is projected by
the operator Q and it should be orthogonal to the vector
SA. ie, (F(1) SAT,, (DF(1)-ATY,,=0. In
addition, similarly in the previous section, the average over
the steady-state distribution should be zero as shown below.
We expand the exponential operator in the definition of
7o(7) as follows:

?U(_r)=(1 + QLy + %QﬁoQﬁof - ~-)Q1;06A. 1)

The average of the first term over the steady-state
distribution is zero since (L,0A) = {dlp Ly0A =
Idl' SALyp,, = 0. The last equality holds owing to the
time-invariance of the steady-state distribution function. The
other terms have the form of (Q£,Q(~)}, . Noting that the
average of the P-projected part over p., must be zero by
definition, we get the equalities (QL,Q(" 0, = (L)),
=0.

Although the two Kinetic equations (13) and (20) contain
the same dynamical information govemed by the operator
Ly » the statistical properties of the random force terms ¥,(7)
in Eq. {13) and %,(7) in Eq. (20) are different. y,{7) is
random and orthogonal to A over the eguilibrium
distribution while %,(1) over the sieadv-siate disiribution.

Multiplying SA” on the RHS of Eq. {20) and taking the
average over the steady-state distribution p,,, we obtain the
kinetic equation for the time-cotrelation function describing
the fluctuation dynamics of the variable A at the steady-state

;—‘:on(z ) 8AT = = [[ dsiolr—5) - (BA(s) - BAT),,.
(22)

We define a relaxation function matrix
o) = (A1) - ATy, - (8A-8ATYe . (23)

Similarly in Eq. (16), kinetics of the time coirelation
funetion S¢(7) may be studied by various tools. The time
correlation function reflects the fluctuation dynamics of the
variables A occurring at the steady-state attained by the
action of the time-independent perturbation.

Solving Eq. (20) in the Laplace transform domain. we
obtain the dynamics of SA,{r) in terms of the relaxation
function matrix and random force term

SA(1) = J'L; dtSo(i—1)- [H0)0A — ¥ (D]. (24)
The mean value of JSA,{(r} over the steady-state

distribution is zero, since (dA), = (7)), =0, as it
should be.

Mina Yang

Linear Response to Time-Dependent Perturbation:
Fluctuation-Dissipation. When a time-dependent pertur-
bation is acted on the system, it is not possible to solve the
kinetic equation (2) exactly. The kinetic operator for the
rime-dependent perturbation is denoted by £,(s) and the
total Kinetic operator is given by L{(7)= LytL,(7).
Applying the first order perturbation theory with respect to
£,(7), the probability distribution function is obtained
within the linear response theory as p(7) = p, +p (1)
where p,(7) involves the effect of the perturbation which is
obtained by solving the kinetic equation

Zo1) = Lop () + L), (25)

with p,(r =0) = 0. Eq. (25) is solved to
7 L;(.-'_S') L .
P = L dse L{$)p,, - (26)

Inserting Eq. (26) along with g, into Eq. (3) and noting
that (8A;,, = 0, we obtain time-dependence of the
dynamical variables responding to the rime-dependent
perturbation

(8N, = [ ds | dreae™ " " ci)p,, . Q7)
Applying the property (3), we rewrite Eq. (27) as
(8N, = .[0’ ds(Li{(s)8A7—3)),,. (28)

Inserting Eq. (24) describing the dynamics of A,(7) into
Eq. (28), we obtain

(8A), = J}i dr{ L (n)Se(r— 1) SA)
= J}i dtle(1—1)- (L{DEA), (29)
= ,[o dtS(1—-1) - F(1)- (A),,

where F(7) is an excitation matrix which depends on the
intensity of the time-dependent perturbation. In order to
obtain the response of system within the linear order with
respect to time-dependent perturbation, one should have the
fluctuation dynamics of the time-comrelation function
occurring at the steady-state which can be studied by other
theoretical methods. Eq. (29) illustrates the fluctuation-
dissipation theorem stemmed from the linear response
theory. The formally exact relation (29) may be utilized in
the study of frequency-domain kinetics of various chemical
reactions.’’ The results will be published elsewhere.'

Summary

We derived two exact formal expressions of memory
equations for the time-evolution of dynamical variables for
the systems of chemical reactions occurring in liquid under
time-independent perturbation with an arbitrary intensity.
One form is suitable for obtaining the infonmation of
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dynamics approaching the steady-state to be attained by the
continuous action of the perturbation on the system which
was in equilibrium. The other form is suitable for obtaining
the fluctuation dynamics of the variables occuiring at the
steady-state, Atiributed to the linear response theory, this
equation can be utilized to determine the Kinetics following
time-dependent perturbation acted on the steady-state or on
the equilibrium state.
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Appendix. Dvnamical Variable Representation of L,; Peq

By the principle of the maximum uncertainty measure of the
information theory.'® the statistical distribution of a svstemn at time 7 is
written regardless of whether the system is in the equilibeium or not as

. | e
Ty = =— A" At Al
ATHED zmexP( o) (AD)
wherte the generalized partition function Zt/) is defined by
Zit = [dTexp(-A"- A(). (A2)

Here A is a set of dynamical variables specifying the macrostale of
the system and A(#) is the sei of the paramelers conjugated io A at ime
¢ which is relaled o experimenial measurements of A, For an
equilibrium distributionf MUty = Ay is constant in time and in this case
2.4,y =cexp(-A" - 4,V Z,, s time-independent. For
example, A is energy and 4;, = |/kgT for the canonical distribution
function,

When an external periurbation giving rise lo change of expeciaiion
values of dynamical variables is acted on the sysiem, the rate of
change of the disteibution function induced by the external
perturbation is related to the changing rates of the conjugated variables
At} as follows:

- d s AT .
L_,wpeq = Epe.-_rlp = IT.T Ai(.ﬂ_/‘:,,- {exP(_A . j’eq)-fz.?q}

= _Z ;{f("\!'_ (‘_-'\_,-;}e‘_!)e}(p(—Ar- ‘z'eq)":.zeq
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— T
- _AAp : ﬁ'l-’peq
The subscript p on both A and A denotes the subset of the variables
correlated with the external perturbation.
Using the formula (A3), we can show that {£,0(~ »w = 0 under
the condition discussed in the above subsection:
{L";’Q(“»tq = J‘drpe:;ﬁ'pg(“) = J ‘{I-Q(“)L;vpeq
N T .
= _<Q()3Ap>eq : ;'P =0

if and only if the set of variables A defined in the projection
operator coincides with Aj.

(Ad)
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