DOI QR코드

DOI QR Code

Synthesis and Properties of Ionic Liquids:Imidazolium Tetrafluoroborates with Unsaturated Side Chains

  • Min, Gwan-Hong (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Yim, Tae-eun (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Lee, Hyun-Yeong (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Huh, Dal-Ho (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Lee, Eun-joo (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Mun, Jun-young (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Oh, Seung M. (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University) ;
  • Kim, Young-Gyu (School of Chemical and Biological Engineering, Center for Energy Conversion & Storage, Seoul National University)
  • Published : 2006.06.20

Abstract

Imidazolium tetrafluoroborate ionic liquids having unsaturated aliphatic side chains were synthesized and characterized. Most of them are liquid at room temperature and all of them are stable up to $300{^{\circ}C}$. Some imidazolium tetrafluoroborates with an allylic side chain showed much wider voltage windows on the platinum electrode, better conductivities, and lower viscosities compared with the corresponding ionic liquids containing the saturated side chains.

Keywords

References

  1. Bonhote, P.; Dias, A.-P.; Armand, M.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M. Inorg. Chem. 1996, 35, 1168- 1178 https://doi.org/10.1021/ic951325x
  2. Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5, 1106-1120 https://doi.org/10.1002/cphc.200301017
  3. Lee, J. S.; Bae, J. Y.; Lee, H.; Quan, N. D.; Kim, H. S.; Kim, H. J. Ind. Eng. Chem. 2004, 10, 1086-1089
  4. Welton, T. Chem. Rev. 1999, 99, 2071-2083 https://doi.org/10.1021/cr980032t
  5. Song, C. E.; Yoon, M. Y.; Choi, D. S. Bull. Korean Chem. Soc. 2005, 26, 1321-1330 https://doi.org/10.5012/bkcs.2005.26.9.1321
  6. Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345-354 https://doi.org/10.5012/bkcs.2006.27.3.345
  7. Anthony, J. L.; Brennecke, J. F.; Holbrey, J. D.; Maginn, E. J.; Mantz, R. A.; Rogers, R. D.; Trulove, P. C.; Visser, A. E.; Welton, T. In Ionic Liquids in Synthesis; Wasserscheid, P.; Welton, T., Eds.; Wiley-VCH Verlag: Weinheim, 2003; pp 41-126
  8. Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun. 1992, 965-967
  9. Webber, A.; Blomgren, G. E. In Advances in Lithium-Ion Batteries; van Schalkwijk, W. A.; Scrosati, B., Eds.; Kluwer Academic/Plenum Publishers: New York, 2002; pp 185-232
  10. In Electrochemical Aspects of Ionic Liquids; Ohno, H., ed.; Wiley- Interscience: Hoboken, 2005; pp 173-223
  11. Hagiwara, R.; Ito, Y. J. Fluorine Chem. 2000, 105, 221-227 https://doi.org/10.1016/S0022-1139(99)00267-5
  12. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem. 2003, 120, 135-141 https://doi.org/10.1016/S0022-1139(02)00322-6
  13. Holbrey, J. D.; Seddon, K. R. J. Chem. Soc., Dalton Trans. 1999, 2133-2139
  14. Ue, M.; Takeda, M.; Takahashi, T.; Takehara, M. Electrochem. Solid State Lett. 2002, 5, A119-A121 https://doi.org/10.1149/1.1472255
  15. Balducci, A.; Bardi, U.; Caporali, S.; Mastragostino, M.; Soavi, F. Electrochem. Commun. 2004, 6, 566-570 https://doi.org/10.1016/j.elecom.2004.04.005
  16. Sato, T.; Masuda, G.; Takagi, K. Electrochim. Acta 2004, 49, 3603-3611 https://doi.org/10.1016/j.electacta.2004.03.030
  17. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M. Chem. Commun. 2002, 2972-2973
  18. de Souza, R. F.; Padilha, J. C.; Goncalves, R. S.; Dupont, J. Electrochem. Commun. 2003, 5, 728-731 https://doi.org/10.1016/S1388-2481(03)00173-5
  19. Garcia, B.; Lavallée, S.; Perron, G.; Michot, C.; Armand, M. Electrochim. Acta 2004, 49, 4583-4588 https://doi.org/10.1016/j.electacta.2004.04.041
  20. Zhou, Z.-B.; Matsumoto, H.; Tatsumi, K. Chem. Eur. J. 2004, 10, 6581-6591 https://doi.org/10.1002/chem.200400533
  21. Yoshida, Y.; Muroi, K.; Otsuka, A.; Saito, G.; Takahashi, M.; Yoko, T. Inorg. Chem. 2004, 43, 1458-1462 https://doi.org/10.1021/ic035045q
  22. Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H., Jr.; Rogers, R. D. Chem. Commun. 2001, 135-136
  23. Zhao, D.; Fei, Z.; Scopelliti, R.; Dyson, P. J. Inorg. Chem. 2004, 43, 2197-2205 https://doi.org/10.1021/ic034801p
  24. Presented in part at the 31st Korean Society of Industrial and Engineering Chemistry National Meeting, Daejeon, Korea, May 13-14, 2005, No. 1P-178
  25. Mizumo, T.; Marwanta, E.; Matsumi, N.; Ohno, H. Chem. Lett. 2004, 33, 1360-1361 https://doi.org/10.1246/cl.2004.1360
  26. Kolle, P.; Dronskowski, R. Eur. J. Inorg. Chem. 2004, 2313-2320
  27. Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Laurenczy, G.; Dyson, P. J. Helv. Chim. Acta 2005, 88, 665-675 https://doi.org/10.1002/hlca.200590046
  28. Kimbonguila, A. M.; Boucida, S.; Guibe, F.; Loffet, A. Tetrahedron 1997, 53, 12525-12538 https://doi.org/10.1016/S0040-4020(97)00772-2
  29. Sun, J.; MacFarlane, D. R.; Forsyth, M. Electrochim. Acta 2003, 48, 1707-1711 https://doi.org/10.1016/S0013-4686(03)00141-5
  30. Lee, J.-T.; Lin, Y.-W.; Jan, Y.-S. J. Power Sources 2004, 132, 244- 248 https://doi.org/10.1016/j.jpowsour.2004.01.045

Cited by

  1. Ionic liquids and ionic liquid crystals of vinyl functionalized imidazolium salts vol.21, pp.6, 2011, https://doi.org/10.1039/C0JM02875D
  2. Carbon Nanotubes-Graphene-Solidlike Ionic Liquid Layer-Based Hybrid Electrode Material for High Performance Supercapacitor vol.116, pp.27, 2012, https://doi.org/10.1021/jp302785j
  3. Solute–solvent hydrogen-bonding in room temperature ionic liquids studied by Raman spectroscopy vol.14, pp.39, 2012, https://doi.org/10.1039/c2cp41567d
  4. -Heterocyclic/Mesoionic Carbene Frameworks: A Stepwise Metalation Strategy for the Generation of a Dicarbene-Bridged Mixed-Metal Pd/Rh Complex vol.31, pp.15, 2012, https://doi.org/10.1021/om3004543
  5. Ab Initio Prediction of Proton NMR Chemical Shifts in Imidazolium Ionic Liquids vol.117, pp.11, 2013, https://doi.org/10.1021/jp310267x
  6. Synthesis and Properties of Alkoxy- and Alkenyl-Substituted Peralkylated Imidazolium Ionic Liquids vol.14, pp.15, 2013, https://doi.org/10.1002/cphc.201300611
  7. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel vol.2013, pp.1537-744X, 2013, https://doi.org/10.1155/2013/395274
  8. from Ionic Liquids by Zeolite for High Quality Electrolyte Manufacture vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1693
  9. Capture vol.6, pp.8, 2013, https://doi.org/10.1002/cssc.201300120
  10. Symmetrical 1,3-Dialkylimidazolium Based Ionic Liquid Crystals vol.60, pp.7, 2013, https://doi.org/10.1002/jccs.201200598
  11. -imidazole vol.69, pp.7, 2013, https://doi.org/10.1107/S1600536813015936
  12. Oxidative coupling of methane in a corona discharge plasma reactor using HY zeolite as a catalyst vol.113, pp.2, 2014, https://doi.org/10.1007/s11144-014-0741-z
  13. Dispersion of Asphaltenes in Petroleum with Ionic Liquids: Evaluation of Molecular Interactions in the Binary Mixture vol.53, pp.48, 2014, https://doi.org/10.1021/ie502672q
  14. Bio-based Ionic Liquid Crystalline Quaternary Ammonium Salts: Properties and Applications vol.6, pp.6, 2014, https://doi.org/10.1021/am4057453
  15. Formation of graphene nanoplatelet-like structures on carbon–ceramic electrode surface: application for simultaneous determination of sunset yellow and tartrazine in some food samples vol.21, pp.3, 2015, https://doi.org/10.1007/s11581-014-1223-z
  16. Electrochemical properties of organic electrolyte solutions containing 1-ethyl-3-methylimidazolium tetrafluoroborate salt vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-014-1565-1
  17. CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes vol.50, pp.1, 2015, https://doi.org/10.1007/s10853-014-8570-z
  18. Room Temperature Ionic Liquid-based Electrolytes as an Alternative to Carbonate-based Electrolytes vol.55, pp.5, 2015, https://doi.org/10.1002/ijch.201400181
  19. Nematic ionic liquid crystals based on pyridinium salts derived from 4-hydroxypyridine vol.18, pp.27, 2016, https://doi.org/10.1039/C6CE00618C
  20. Active Ruthenium (0) Nanoparticles Catalyzed Wittig-Type Olefination Reaction vol.147, pp.3, 2017, https://doi.org/10.1007/s10562-016-1943-y
  21. H NMR chemical shifts for clusters of imidazolium-based ionic liquids vol.19, pp.26, 2017, https://doi.org/10.1039/C7CP02951A
  22. Effect of Different Families of Hydrophobic Anions of Imadazolium Ionic Liquids on Asphaltene Dispersants in Heavy Crude Oil vol.31, pp.8, 2017, https://doi.org/10.1021/acs.energyfuels.7b01167
  23. Characteristics of protic ionic liquids based on triethanolammonium salts of biologically active carboxylic acids and their impact on the growth properties of the Rhizopus oryzae fungus vol.43, pp.5, 2017, https://doi.org/10.1134/S108765961705008X
  24. Sonochemical Synthesis and Characterization of Some Alkoxyl-Functionalized Ionic Liquids Derived from 1-Butoxyl-3-butyl Imidazolium Bromide vol.46, pp.5, 2017, https://doi.org/10.1007/s10953-017-0627-6
  25. In Situ XPS Studies of Electrochemically Positively Polarized Molybdenum Carbide Derived Carbon Double Layer Capacitor Electrode vol.161, pp.9, 2014, https://doi.org/10.1149/2.0641409jes
  26. Interactions of Imidazolium Based Ionic Liquids with Water Studied by Density and Speed of Sound Measurements: Effect of the Chain Length of an Alkyl Substituent on the Imidazolium Ion vol.47, pp.2, 2018, https://doi.org/10.1007/s10953-018-0724-1
  27. Simple and double pyridinium salts with cyanobiphenyl groups as ionic liquids and ionic liquid crystals: synthesis and investigation of thermal behavior vol.44, pp.3, 2018, https://doi.org/10.1007/s11164-017-3212-0
  28. Sulfur extraction from liquid fuels using trihexyl(tetradecyl)phosphonium tetrafluoroborate: as promising solvent vol.25, pp.17, 2018, https://doi.org/10.1007/s11356-018-1789-5
  29. Synthesis and Properties of Ionic Liquids: Imidazolium Tetrafluoroborates with Unsaturated Side Chains. vol.37, pp.48, 2006, https://doi.org/10.1002/chin.200648138
  30. Comparative Study on Surface Films from Ionic Liquids Containing Saturated and Unsaturated Substituent for LiCoO[sub 2] vol.157, pp.2, 2010, https://doi.org/10.1149/1.3265476
  31. Naphthalene Hydrogenation over Catalysts Formed In Situ from Ruthenium-Containing Thiosalts vol.58, pp.14, 2018, https://doi.org/10.1134/S0965544118140116
  32. Synthesis and Physicochemical Properties of Ionic Liquids: 1-Alkenyl-2,3-dimethylimidazolium Tetrafluoroborates vol.28, pp.9, 2006, https://doi.org/10.5012/bkcs.2007.28.9.1562
  33. Synthesis and Properties of Pyrrolidinium and Piperidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquids with Allyl Substituents vol.28, pp.9, 2006, https://doi.org/10.5012/bkcs.2007.28.9.1567
  34. Probing the electrochemical double layer of an ionic liquid using voltammetry and impedance spectroscopy: A comparative study of carbon nanotube and glassy carbon electrodes in [EMIM]+[EtSO vol.81, pp.3, 2006, https://doi.org/10.1016/j.talanta.2010.01.059
  35. Allyl-functionalized ionic liquids as electrolytes for electric double-layer capacitors vol.195, pp.21, 2006, https://doi.org/10.1016/j.jpowsour.2010.05.066
  36. Physical and electrochemical properties of ionic liquids 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-butyl-1-methylpyrrolidinium bis(trif vol.157, pp.1, 2006, https://doi.org/10.1016/j.molliq.2010.08.005
  37. Polysiloxane ionic liquids as good solvents for β-cyclodextrin-polydimethylsiloxane polyrotaxane structures vol.8, pp.None, 2006, https://doi.org/10.3762/bjoc.8.184
  38. Phase behavior and ionic conductivity of dendron-coil-dendron block copolymer/ionic liquid electrolytes vol.4, pp.73, 2006, https://doi.org/10.1039/c4ra07483a
  39. Predicting the viscosity and electrical conductivity of ionic liquids on the basis of theoretically calculated ionic volumes vol.113, pp.6, 2006, https://doi.org/10.1080/00268976.2014.964344
  40. Conducting and interface characterization of carbonate-type organic electrolytes containing EMImBF4 as an additive against activated carbon electrode vol.16, pp.1, 2006, https://doi.org/10.5714/cl.2015.16.1.051
  41. Pyrrolinium-based Ionic Liquid as a Flame Retardant for Binary Electrolytes of Lithium Ion Batteries vol.4, pp.2, 2016, https://doi.org/10.1021/acssuschemeng.5b00981
  42. Regioselective alkylation of 1,2,4-triazole using ionic liquids under microwave conditions vol.5, pp.3, 2006, https://doi.org/10.1515/gps-2015-0138
  43. Thermal stability of imidazolium-based ionic liquids vol.4, pp.1, 2016, https://doi.org/10.17721/fujcv4i1p51-64
  44. Post Modification of Poly Glycidyl Azide with Ionic‐Liquid‐Based Reactive Plasticizer through Catalyst‐Free Click Reaction vol.3, pp.23, 2006, https://doi.org/10.1002/slct.201801017
  45. Syntheses and Properties of Methoxy and Nitrile Functionalized Imidazolium Tris(pentafluoroethyl)trifluorophosphate Ionic Liquids vol.63, pp.5, 2006, https://doi.org/10.1021/acs.jced.7b00281
  46. 1-Allyl-3-methylimidazolium-based ionic liquids employed as suitable electrolytes for high energy density supercapacitors based on graphene nanosheets electrodes vol.249, pp.None, 2006, https://doi.org/10.1016/j.molliq.2017.11.078
  47. Structural Factors Determining Thermal Stability Limits of Ionic Liquid/MOF Composites: Imidazolium Ionic Liquids Combined with CuBTC and ZIF-8 vol.58, pp.31, 2006, https://doi.org/10.1021/acs.iecr.9b02415
  48. Ecofriendly microwave-assisted preparation, characterization and antitumor activity of some propylimidazolium-based Ionic liquids derivatives vol.14, pp.1, 2006, https://doi.org/10.1080/16583655.2020.1829395
  49. A fluorine-substituted pyrrolidinium-based ionic liquid for high-voltage Li-ion batteries vol.56, pp.53, 2006, https://doi.org/10.1039/d0cc02184a