DOI QR코드

DOI QR Code

A Convenient Synthesis of 8-Alkyl-2' (or 3')-azido (or amino)-2' (or 3')-deoxyadenosine as Diverse Synthetic Precursors of Cyclic Adenosine Diphosphate Ribose (cADPR)

  • Kim, Beom-Tae (Department of Chemistry, Chonbuk National University) ;
  • Kim, Bo-Seung (Department of Bioactive Material Sciences, College of Natural Science, Chonbuk National University) ;
  • Han, Chy-Hyoung (Department of Chemistry, Chonbuk National University) ;
  • O, Kwang-Joong (Department of Chemistry, Chonbuk National University) ;
  • Kim, Sun-Ja (Department of Chemistry, Chonbuk National University) ;
  • Chun, Jae-Chul (Division of Applied Biotechnology, College of Agriculture and Life Science, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Lee, Jin-Ho (Division of Applied Biotechnology, College of Agriculture and Life Science, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Kim, Sung-Eun (Division of Applied Biotechnology, College of Agriculture and Life Science, Research Center of Bioactive Materials, Chonbuk National University) ;
  • Hwang, Ki-Jun (Department of Chemistry, Chonbuk National University)
  • Published : 2006.01.20

Abstract

As key nucleoside intermediates for the preparation of cyclic adenosine diphosphate ribose (cADPR, 1) analogues, 8-alkyl-2' (or 3')-azido(or amino)-adenosine derivatives (16-19) were successfully prepared by alkylating selectively protected adenosine derivatives (12, 13) via Pd(0) catalyzed cross-coupling reaction with tetraalkyltin reagents, followed by the sugar modification of these 8-alkyl-adenosine derivatives according to our precedent procedure. Compared to other precedent procedures, our 8-alkylation methodology using selectively TBDMS-protected 8-alkyl adenosine derivatives as starting materials will be utilized very conveniently to prepare highly functionalized adenosine analogues, which will be serve as key intermediates for the cADPR.

Keywords

References

  1. Lee, H. C.; Munshi, C.; Graeff, R. Mol. Cell Biochem. 1999, 193, 89 https://doi.org/10.1023/A:1006916311348
  2. Takasawa, S.; Nata, S.; Yonekura, H.; Okamoto, H. Science 1993, 259, 370 https://doi.org/10.1126/science.8420005
  3. Lee, H. C. Mol. & Cell Biochem. 1994, 138, 229 https://doi.org/10.1007/BF00928466
  4. Currie, K.; Swann, K.; Galione, A.; Scott, R. H. Mol. Biol. Cell 1992, 3, 1415 https://doi.org/10.1091/mbc.3.12.1415
  5. Takasawa, S.; Akiyama, T.; Nata, K.; Kuroki, M.; Tohgo, A.; Noguchi, N.; Kobayashi, S.; Kato, I.; Katada, T.; Okamoto, H. J. Biol. Chem. 1998, 273, 2497 https://doi.org/10.1074/jbc.273.5.2497
  6. Takasawa, S.; Nata, K.; Yonekura, H.; Okamoto, H. Science 1993, 259, 370 https://doi.org/10.1126/science.8420005
  7. Jayaraman, T.; Ondriasova, E.; Ondrias, K.; Harnick, D. J.; Marks, A. R. Proc. Natl. Acad. Sci. 1995, 92, 6007
  8. Guse, A. H.; da Silva, C. P.; Berg, I.; Weber, K.; Heyer, P.; Hohenegger, M.; Ashamu, G. A.; Skapenko, A. L.; Schulze-Koops, H.; Potter, B. V. L.; Mayr, G. W. Nature 1999, 398, 70 https://doi.org/10.1038/18024
  9. Rakovic, R.; Cui, Y.; Iino, S.; Galione, A.; Ashamu, G. A.; Potter, B. V. L.; Terrar, D. A. J. Biol. Chem. 1999, 274, 17820
  10. Guse, A. H. Curr. Mol. Med. 2004, 4, 239 https://doi.org/10.2174/1566524043360771
  11. Lee, H. C. Curr. Mol. Med. 2004, 4, 227 https://doi.org/10.2174/1566524043360753
  12. Potter, B. V. L.; Walseth, T. F. Curr. Mol. Med. 2004, 4, 308
  13. Shuto, S.; Matsuda, A. Curr. Mol. Med. 2004, 11, 827 https://doi.org/10.2174/0929867043455639
  14. Guse, A. H. J. Mol. Med. 2000, 78, 26 https://doi.org/10.1007/s001090000076
  15. Zhang, F.-J.; Gu, Q.-M.; Sih, C. J. Bioorg. & Med. Chem. 1999, 7, 653 https://doi.org/10.1016/S0968-0896(98)00256-9
  16. Guse, A. H.; da Silva, C. P.; Emmrich, F.; Ashamu, G. A.; Potter, B. V. L.; Mayr, G. W. J. Immunol. 1995, 155, 353
  17. Guse, A. H.; da Silva, C. P.; Weber, K.; Armah, C.; Schulze, C.; Potter, B. V. L.; Mayr, G. W.; Hilz, H. Eur. J. Biochem. 1997, 245, 411 https://doi.org/10.1111/j.1432-1033.1997.t01-1-00411.x
  18. Bailey, V. C.; Sethi, J. K.; Fortt, S. M.; Galione, A.; Potter, B. V. L. Chemistry & Biology 1997, 4, 51 https://doi.org/10.1016/S1074-5521(97)90236-2
  19. Shuto, S.; Fukuoka, M.; Manikowsky, A.; Ueno, Y.; Nakano, T.; Kuroda, H.; Kuroda, H.; Matsuda, A. J. Am. Chem. Soc. 2001, 123, 8750 https://doi.org/10.1021/ja010756d
  20. Wong, L.; Aarhus, R.; Lee, H. C.; Walseth, T. F. Biochim. Biophys. Acta 1999, 1472, 555 https://doi.org/10.1016/S0304-4165(99)00161-0
  21. Kim, B.-T.; Kim, S.-K.; Lee, S.-J.; Hwang, K.-J. Bull. Korean Chem. Soc. 2004, 25, 243 https://doi.org/10.5012/bkcs.2004.25.2.243
  22. Ueda, T.; Matsuda, A. Chem. Pharm. Bull. 1984, 33, 3236
  23. Matsuda, A.; Nomoto, Y.; Ueda, T. Chem. Pharm. Bull. 1979, 27, 183 https://doi.org/10.1248/cpb.27.183
  24. Sarfati, S. R.; Pochet, S.; Guerreiro, C.; Namane, A.; Huynh-Dinh, T.; Igolen, J. Tetrahedron 1987, 43, 34
  25. Hayakawa, H.; Haraguchi, K.; Tanaka, H.; Miyasaka, T. Chem. Pharm. Bull. 1987, 35, 72 https://doi.org/10.1248/cpb.35.72
  26. Barton, D. H. R.; Hedgecock, C. J. R.; Lederer, E.; Motherwell, W. B. Tetrahedron Lett. 1979, 279
  27. Nair, V.; Purdy, D. F. Tetrahedron 1991, 47, 365 https://doi.org/10.1016/S0040-4020(01)90496-X
  28. Moriarty, R. M.; Epa, W. R.; Awasthi, A. K. Tetrahedron Lett. 1990, 31, 5877 https://doi.org/10.1016/S0040-4039(00)97983-8
  29. Kitade, Y.; Nakata, Y.; Hirota, K.; Maki, Y.; Pabuccuoglu, A.; Torrence, P. F. Nucleic Acids Res. 1991, 19, 4103 https://doi.org/10.1093/nar/19.15.4103
  30. Van Aerschot, A. A.; Mamos, P.; Weyns, N. J.; Ikeda, S.; De Clercq, E.; Hedewijn, P. A. J. Med. Chem. 1993, 36, 2938 https://doi.org/10.1021/jm00072a013
  31. Hirota, K.; Kitade, Y.; Kanbe, Y.; Maki, Y. J. Org. Chem. 1992, 57, 5268 https://doi.org/10.1021/jo00045a051
  32. Zhang, W.; Robins, M. J. Tetrahedron Lett. 1992, 33, 1177 https://doi.org/10.1016/S0040-4039(00)91889-6
  33. Spurlock, L. A.; Schultz, R. J. J. Am. Chem. Soc. 1970, 92, 6302 https://doi.org/10.1021/ja00724a033
  34. Spurlock, L. A.; Cox, W. G. J. Am. Chem. Soc. 1969, 91, 2961 https://doi.org/10.1021/ja01039a023

Cited by

  1. A Convenient Synthesis of 8-Alkyl-2′(or 3′)-azido(or amino)-2′(or 3′)-deoxyadenosine as Diverse Synthetic Precursors of Cyclic Adenosine Diphosphate Ribose (cADPR). vol.37, pp.52, 2006, https://doi.org/10.1002/chin.200652207
  2. Straightforward C-8 Alkylation of 2'(or 3')-Azidoadenosine Derivatives by Utilizing Pd(0) Catalyst and Tetraalkyltin vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.915
  3. 27Al Solid-state NMR Structural Studies of Hydrotalcite Compounds Calcined at Different Temperatures vol.30, pp.1, 2006, https://doi.org/10.5012/bkcs.2009.30.1.149