References
- Kickelbick, G. Angew. Chem. Int. Ed. 2004, 43, 3102 https://doi.org/10.1002/anie.200301751
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217 https://doi.org/10.1021/ar040163i
- Nicole, L.; Boissiere, C.; Grosso, D.; Quach, A.; Sanchez, C. J. Mater. Chem. 2005, 15, 3598 https://doi.org/10.1039/b506072a
- Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276 https://doi.org/10.1038/46248
- Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705 https://doi.org/10.1038/nature01650
- Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523 https://doi.org/10.1038/nature02311
- Dybtsev, D. N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. J. Am. Chem. Soc. 2004, 126, 32 https://doi.org/10.1021/ja038678c
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 32, 468
- Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Mirgiolaki, I. Science 2005, 309, 2040 https://doi.org/10.1126/science.1116275
- Huang, L.; Wang, H.; Chen, J.; Wang, Z.; Sun, J.; Zhao, D.; Yan, Y. Microporous Mesoporous Mater. 2003, 58, 105 https://doi.org/10.1016/S1387-1811(02)00609-1
- Panella, B.; Hirscher, M. Adv. Mater. 2005, 17, 538 https://doi.org/10.1002/adma.200400946
- Larhed, M.; Moberg, C.; Hallberg, A. Acc. Chem. Res. 2002, 35, 717 https://doi.org/10.1021/ar010074v
- Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J.-S. Catal. Survey Asia 2004, 8, 91 https://doi.org/10.1023/B:CATS.0000026990.25778.a8
- Jhung, S. H.; Yoon, J. W.; Hwang, J.-S.; Cheetham, A. K.; Chang, J.-S. Chem. Mater. 2005, 17, 4455 https://doi.org/10.1021/cm047708n
- Jhung, S. H.; Chang, J.-S.; Hwang, J. S.; Park, S.-E. Microporous Mesoporous Mater. 2003, 64, 33 https://doi.org/10.1016/S1387-1811(03)00501-8
- Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, U. K.; Jhung, S. H.; Hwang, J.-S.; Park, M. S. Angew. Chem. Int. Ed. 2005, 45, 556
- Jhung, S. H.; Lee, J.-H.; Chang, J.-S. Bull. Korean Chem. Soc. 2005, 26, 880 https://doi.org/10.5012/bkcs.2005.26.6.880
- Jhung, S. H.; Lee, J.-H.; Forster, P. M.; Ferey, G.; Cheetham, A. K.; Chang, J.-S. Chem. Eur. J. 2006, 12, 7699
- Jhung, S. H.; Lee, J.-H.; Serre, C.; Ferey, G.; Chang, J.-S. Adv. Mater. accepted (2006)
Cited by
- Accelerated Syntheses of Porous Isostructural Lanthanide-Benzenetricarboxylates (Ln-BTC) Under Ultrasound at Room Temperature vol.2010, pp.31, 2010, https://doi.org/10.1002/ejic.201000541
- Syntheses of Metal–Organic Frameworks and Aluminophosphates under Microwave Heating: Quantitative Analysis of Accelerations vol.11, pp.10, 2011, https://doi.org/10.1021/cg200594e
- Microwave-Assisted Synthesis of Metal–Organic Frameworks vol.40, pp.2, 2011, https://doi.org/10.1039/C0DT00708K
- Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites vol.112, pp.2, 2012, https://doi.org/10.1021/cr200304e
- Microwave Synthesis of the CPM-5 Metal Organic Framework vol.35, pp.6, 2012, https://doi.org/10.1002/ceat.201100626
- Structural Diversity of Lanthanum–Organic Frameworks Based on 1,4-Phenylenebis(methylene)diphosphonic Acid vol.13, pp.2, 2013, https://doi.org/10.1021/cg301112k
- Efficient and environmentally friendly electrochemical synthesis of the metallacalixarene [Cu(1,3-bdc)·DMF]·2H2O vol.15, pp.44, 2013, https://doi.org/10.1039/c3ce41679h
- Hydrogen Storage in Metal-Organic Frameworks vol.23, pp.2, 2013, https://doi.org/10.1007/s10904-012-9779-4
- Microwave-assisted synthesis of UIO-66 and its adsorption performance towards dyes vol.16, pp.30, 2014, https://doi.org/10.1039/C4CE00526K
- Tuning the crystal size and morphology of the substituted imidazole material, SIM-1 vol.21, pp.6, 2014, https://doi.org/10.1007/s10934-014-9840-5
- metal-organic frameworks vol.10, pp.8, 2016, https://doi.org/10.1002/pssr.201600175
- Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability vol.19, pp.1, 2007, https://doi.org/10.1002/adma.200601604
- Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition pp.21, 2008, https://doi.org/10.1039/b800061a
- Chemical and electro-chemical applications of in situ microwave heating vol.104, pp.1460-4787, 2008, https://doi.org/10.1039/b703986g
- A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties pp.33, 2009, https://doi.org/10.1039/b904280f
- Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis vol.19, pp.10, 2009, https://doi.org/10.1002/adfm.200801130
- Synthesis of isostructural porous metal-benzenedicarboxylates: Effect of metal ions on the kinetics of synthesis vol.12, pp.10, 2010, https://doi.org/10.1039/b927113a
- Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses vol.12, pp.11, 2010, https://doi.org/10.1039/b921558a
- Size Control of Silicone Particles Using Sonochemical Approaches vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2401
- Hydrogen storage in metal–organic frameworks vol.9, pp.6, 2006, https://doi.org/10.1039/b706207a
- Microwave Assisted N-Alkenyl Condensation between Pyrrolidine-2-thione and Various Aldehydes vol.29, pp.3, 2006, https://doi.org/10.5012/bkcs.2008.29.3.604
- Rapid synthesis of a novel cadmium imidazole-4,5-dicarboxylate metal–organic framework under microwave-assisted solvothermal condition vol.11, pp.10, 2006, https://doi.org/10.1016/j.inoche.2008.07.020
- Facile Syntheses of Metal-organic Framework Cu3(BTC)2(H2O)3 under Ultrasound vol.30, pp.12, 2006, https://doi.org/10.5012/bkcs.2009.30.12.2921
- Factors in the Synthesis of 3-D Metal-Organic Framework, [Zn(HCOO)3](C2H8N), Derived from Decomposition of Solvent vol.53, pp.1, 2006, https://doi.org/10.5012/jkcs.2009.53.1.073
- 마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성 vol.53, pp.5, 2006, https://doi.org/10.5012/jkcs.2009.53.5.553
- Facile Purification of Porous Metal Terephthalates with Ultrasonic Treatment in the Presence of Amides vol.15, pp.43, 2006, https://doi.org/10.1002/chem.200902036
- Synthesis of a Metal–Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study vol.16, pp.3, 2010, https://doi.org/10.1002/chem.200902382
- Solvent-Free Michael Addition Between EMME and Secondary Amine under Focused Microwave Irradiation vol.31, pp.5, 2006, https://doi.org/10.5012/bkcs.2010.31.5.1155
- Study of mechanochemical synthesis in the formation of the metal-organic framework Cu3(BTC)2 for hydrogen storage vol.143, pp.1, 2006, https://doi.org/10.1016/j.micromeso.2011.02.003
- Synthesis of isostructural metal–organic frameworks, CPO-27s, with ultrasound, microwave, and conventional heating: Effect of synthesis methods and metal ions vol.173, pp.3, 2006, https://doi.org/10.1016/j.cej.2011.08.037
- Rapid Synthesis of Mesoporous Nickel Phosphates under Microwave Assisted Hydrothermal Condition : Rapid Synthesis of Mesoporous Nickel Phosphates under Microwave Assisted Hydrothermal Condition vol.27, pp.5, 2006, https://doi.org/10.3724/sp.j.1077.2012.00501
- Rapid solvothermal synthesis of an isoreticular metal-organic framework with permanent porosity for hydrogen storage vol.153, pp.None, 2012, https://doi.org/10.1016/j.micromeso.2011.12.036
- Microwave-assisted modulated synthesis of zirconium-based metal-organic framework (Zr-MOF) for hydrogen storage applications vol.105, pp.5, 2006, https://doi.org/10.3139/146.111047
- Synthesis of porous Cu-BTC with ultrasonic treatment: Effects of ultrasonic power and solvent condition vol.29, pp.None, 2006, https://doi.org/10.1016/j.ultsonch.2015.08.023
- Synthesis and Formation Mechanism of Textured MOF-5 vol.16, pp.4, 2006, https://doi.org/10.1021/acs.cgd.5b01785
- 광이성질화 현상을 갖는 아조벤젠 리간드와 이를 사용한 금속-유기구조체 제조 vol.54, pp.1, 2006, https://doi.org/10.12772/tse.2017.54.066
- Recent Progress on Metal-Organic Framework Membranes for Gas Separations: Conventional Synthesis vs. Microwave-Assisted Synthesis vol.27, pp.1, 2006, https://doi.org/10.14579/membrane_journal.2017.27.1.1
- Current Trend in Synthesis, Post‐Synthetic Modifications and Biological Applications of Nanometal‐Organic Frameworks (NMOFs) vol.37, pp.4, 2006, https://doi.org/10.1002/cjoc.201800407
- Potential Application Zn-MOF/MnO2 Composite as Methanol Gas Sensor vol.811, pp.None, 2006, https://doi.org/10.4028/www.scientific.net/kem.811.113
- Metal-organic frameworks: preparation and applications in highly efficient heterogeneous photocatalysis vol.4, pp.2, 2006, https://doi.org/10.1039/c9se00972h
- Bismuth-based metal-organic framework prepared by pulsed laser ablation method in liquid vol.14, pp.suppl1, 2020, https://doi.org/10.1007/s40094-020-00397-y
- Review on synthesis and application of MIL-53 vol.43, pp.p5, 2006, https://doi.org/10.1016/j.matpr.2021.02.179
- A Fluorinated METAL ‐ ORGANIC Framework, FMOF ‐2, for Preferential Adsorption of Ethane over Ethylene vol.42, pp.2, 2006, https://doi.org/10.1002/bkcs.12179
- Synthesis of MOF-5 nanostructures by laser ablation method in liquid and evaluation of its properties vol.32, pp.3, 2006, https://doi.org/10.1007/s10854-020-05126-4
- Electrospun Cobalt-Incorporated MOF-5 Microfibers as a Promising Electrocatalyst for OER in Alkaline Media vol.60, pp.13, 2006, https://doi.org/10.1021/acs.inorgchem.1c01151
- Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review vol.375, pp.None, 2006, https://doi.org/10.1016/j.cattod.2020.02.033
- Metal–organic framework-based sorbents in analytical sample preparation vol.445, pp.None, 2021, https://doi.org/10.1016/j.ccr.2021.214107