DOI QR코드

DOI QR Code

Simultaneous Kinetic Spectrophotometric Determination of Sulfite and Sulfide Using Partial Least Squares (PLS) Regression

  • Afkhami, Abbas (Department of Chemistry, Faculty of Science, Bu- Ali Sina University) ;
  • Sarlak, Nahid (Department of Chemistry, Faculty of Science, Bu- Ali Sina University) ;
  • Zarei, Ali Reza (Faculty of Materials, Malek Ashtar University of Technology) ;
  • Madrakian, Tayyebeh (Department of Chemistry, Faculty of Science, Bu- Ali Sina University)
  • Published : 2006.06.20

Abstract

The partial least squares (PLS-1) calibration model based on spectrophotometric measurement, for the simultaneous determination of sulfite and sulfide is described. This method is based on the difference between the rate of the reaction of sulfide and sulfite with Malachite Green in pH 7.0 buffer solution and at 25 ${^{\circ}C}$. The absorption kinetic profiles of the solutions were monitored by measuring the decrease in the absorbance of Malachite Green at 617 nm in the time range 10-180 s after initiation of the reactions with 2 s intervals. The experimental calibration matrix for partial least squares (PLS-1) calibration was designed with 24 samples. The cross-validation method was used for selecting the number of factors. The results showed that simultaneous determination could be performed in the range 0.030-1.5 and 0.030-1.2 $\mu$g m$L ^{-1}$ for sulfite and sulfide, respectively. The proposed method was successfully applied to simultaneous determination of sulfite and sulfide in water samples and whole human blood.

Keywords

References

  1. Lobinski, R.; Marczenko, Z. Crit. Rev. Anal. Chem. 1992, 23, 55 https://doi.org/10.1080/10408349208051647
  2. Martens, H.; Naes, T. Multivariate Calibration; Wiley: Chichester, 1991
  3. Geladi, P.; Kowalski, B. R. Anal. Chim. Acta 1986, 185, 1 https://doi.org/10.1016/0003-2670(86)80028-9
  4. Zupan, J.; Gasteiger, J. Neural Networks for Chemists; VCH: Weinheim, 1993
  5. Wold, H. In Sytstem under Indirect Observation: Causality- Structure-Prediction, Vol II; Joreskoq, K. G.; Wold, H., Eds.; North Holland Publishing: Amsterdam, 1982
  6. Otto, M.; Wegscheider, W. Anal. Chem. 1985, 57, 63 https://doi.org/10.1021/ac00279a020
  7. Afkhami, A.; Bahram, M.; Zarei, A. R. Michrochim. Acta 2004, 148, 317 https://doi.org/10.1007/s00604-004-0281-8
  8. Madrakian, T.; Afkhami, A.; Borazjani, M.; Bahram, M. Spectrochim Acta Part A 2005, 61, 2988 https://doi.org/10.1016/j.saa.2004.11.012
  9. Rambla, F. J.; Garrigues, S.; De La Guardia, M. Anal. Chim. Acta 1997, 344, 41 https://doi.org/10.1016/S0003-2670(97)00032-9
  10. Havel, J.; Jimenez, J.; Bautista, R. D.; Arias Leon, J. J. Analyst 1993, 118, 1355 https://doi.org/10.1039/an9931801355
  11. Perez-Bendito, D.; Silva, M. Kinetic Methods in Analytical Chemistry; Ellis Horwood: Chichester, 1988
  12. Quencer, B. M.; Crouch, S. R. Crit. Rev. Anal. Chem. 1993, 24, 243 https://doi.org/10.1080/10408349308050554
  13. Massart, D. L.; Vandeginste, B. G. M.; Buydens, L. M. C.; Jong, S. D. E.; Lewi, P. J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics. Part A; Elsevier Science: 1997
  14. Stammati, A.; Zanetti, C.; Pizzoferrato, L.; Quattrucci, E.; Tranquilli, G. B. Food Addit. Contam. 1992, 9, 511
  15. Pizzoferrato, L.; Quattrucci, E.; Di Lullo, G.; In Nutritional and Toxicological Aspects of Food Processing; Walker, R.; Quattrucci, E., Eds.; Taylor and Francis: London, 1988; p 93
  16. Forstner, U.; Salomons, W.; Stigliani W., Eds.; In Biogeodynamics of Pollutants in Soils and Sediments; Springer: Germany, 1995; p 247
  17. Safavi, A.; Ramezani, Z. Talanta 1997, 44, 1225 https://doi.org/10.1016/S0039-9140(96)02163-7
  18. Afkhami, A.; Rezaei, M. Can. J. Anal. Sci. Spect. 2000, 45, 9
  19. Mousavi, M. F.; Sarlak, N. Anal. Lett. 1997, 30, 1567 https://doi.org/10.1080/00032719708001676
  20. Barzegar, M.; Jabbari, A.; Esmaeili, M. Bul. Kor. Chem. Soc. 2003, 24, 1261 https://doi.org/10.5012/bkcs.2003.24.9.1261
  21. Tang, D.; Santschi, P. H. J. Chromatogr. A 2000, 883, 305 https://doi.org/10.1016/S0021-9673(00)00381-2
  22. Perfetti, G. A.; Diachenko, G. W. J. AOAC Int. 2003, 86, 544
  23. He, Y.; Zheng, Y.; Locke, D. C. Anal. Chim. Acta 2002, 459, 209 https://doi.org/10.1016/S0003-2670(02)00132-0
  24. Hassan, S. S. M.; Marzouk, S. A. M.; Sayour, H. E. M. Anal. Chim. Acta 2002, 466, 47 https://doi.org/10.1016/S0003-2670(02)00515-9
  25. Isaac, A.; Wain, A. J.; Compton, R. G.; Livingstone, C.; Davis, J. Analyst 2005, 130, 1343 https://doi.org/10.1039/b509721e
  26. Ghasemi, J.; Mohammadi, D. E. Anal. Lett. 2003, 36, 2243 https://doi.org/10.1081/AL-120023715
  27. Ghasemi, J.; Mohammadi, D. E. Microchem. J. 2002, 71, 1 https://doi.org/10.1016/S0026-265X(01)00114-X
  28. Pinillos, S. C.; Vicente, I. S.; Asensio, J. S.; Bernal, J. G. Talanta 1995, 42, 937 https://doi.org/10.1016/0039-9140(95)01529-K
  29. Steudel, R.; Holdt, G.; Goebel, T. J. Chromatogr. 1989, 475, 442 https://doi.org/10.1016/S0021-9673(01)89701-6
  30. Dasgupta, P. K.; Yang, H. C. Anal. Chem. 1986, 58, 2839 https://doi.org/10.1021/ac00126a055
  31. Safavi, A.; Moradlou, O.; Maesum, S. Talanta 2004, 62, 51 https://doi.org/10.1016/S0039-9140(03)00399-0
  32. Gonzalez, V.; Moreno, B.; Sicilia, D.; Rubio, S.; Perez-Bendito, D. Anal. Chem. 1993, 65, 1897 https://doi.org/10.1021/ac00062a015
  33. Williams, W. J. Handbook of Anion Determination; Butterworths: London, 1979
  34. Blanco, M.; Coello, J.; Ituriage, H.; Maspoch, S.; Redon, M. Appl. Spectroc. 1994, 48, 37 https://doi.org/10.1366/0003702944027633
  35. Richardson, C. J.; Magee, E. A. M.; Cummings, J. H. Clin. Chim. Acta 2000, 293, 115 https://doi.org/10.1016/S0009-8981(99)00245-4

Cited by

  1. A new voltammetric sensor for the determination of sulfite in water and wastewater using modified-multiwall carbon nanotubes paste electrode vol.93, pp.6, 2013, https://doi.org/10.1080/03067319.2011.637198
  2. A comparison between determination of trace amounts of sulfide in the presence and absence of micelle particles in natural waters (Qazvin, Iran): a kinetic spectrophotometric approach vol.187, pp.5, 2015, https://doi.org/10.1007/s10661-015-4478-6
  3. Indirect spectrophotometric determination of sulphides with N,N-dietylaniline vol.37, pp.6, 2015, https://doi.org/10.3103/S1063455X15060053
  4. Simultaneous Kinetic-Potentiometric Determination of Hydrazine and Thiosemicarbazide by Partial Least Squares and Principle Component Regression Methods vol.55, pp.1, 2006, https://doi.org/10.1002/jccs.200800020
  5. Simultaneous kinetic spectrophotometric determination of sulfide and sulfite ions by using an optode and the partial least squares (PLS) regression vol.160, pp.1, 2006, https://doi.org/10.1016/j.snb.2011.08.042
  6. Electrochemical Properties of the Oxo‐Manganese‐Phenanthroline Complex Immobilized on Ion‐Exchange Polymeric Film and Its Application as Biomimetic Sensor for Sulfite Ions vol.26, pp.10, 2006, https://doi.org/10.1002/elan.201400289
  7. Preparation and characterization of γ-Fe2O3 nanoparticles and investigation of its adsorption performance for sulfide, sulfite and thiosulfate from aqueous solutions using vol.40, pp.1, 2006, https://doi.org/10.1016/j.ultsonch.2017.08.035