References
- Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621 https://doi.org/10.1016/j.tetlet.2003.12.133
- Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281 https://doi.org/10.5012/bkcs.2005.26.8.1281
- Kim, J. N.; Im, Y. J.; Gong, J. H.; Lee, K. Y. Tetrahedron Lett. 2001, 42, 4195 https://doi.org/10.1016/S0040-4039(01)00687-6
- Kim, J. M.; Im, Y. J.; Kim, T. H.; Kim, J. N. Bull. Korean Chem. Soc. 2002, 23, 657 https://doi.org/10.5012/bkcs.2002.23.5.657
- Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Tetrahedron 2006, 62, 3128 https://doi.org/10.1016/j.tet.2006.01.028
- Lee, M. J.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1355 https://doi.org/10.1016/j.tetlet.2005.12.032
- Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481 https://doi.org/10.5012/bkcs.2005.26.10.1481
- Chen, J.- x.; Chai, W.-y.; Zhu, J.-l.; Gao, J.; Chen, W.-x.; Kao, T.-y. Synthesis 1993, 87
- El Alami, N.; Belaud, C.; Villieras, J. Synthesis 1993, 1213
- Butler, D. E.; Leonard, J. D.; Caprathe, B. W.; L'ltalien, Y. J.; Pavia, M. R.; Hershenson, F. M.; Poschel, P. H.; Marriott, J. G. J. Med. Chem. 1987, 30, 498 https://doi.org/10.1021/jm00386a010
- Thomas, E. W.; Rynbrandt, R. H.; Zimmermann, D. C.; Bell, L. T.; Muchmore, C. R.; Yankee, E. W. J. Org. Chem. 1989, 54, 4535 https://doi.org/10.1021/jo00280a018
- Ent, H.; De Koning, H.; Speckamp, W. N. J. Org. Chem. 1986, 51, 1687 https://doi.org/10.1021/jo00360a011
- Denmark, S. E.; Seierstad, M. J. Org. Chem. 1999, 64, 1610 https://doi.org/10.1021/jo9820869
- Denmark, S. E.; Schnute, M. E.; Marcin, L. R.; Thorarensen, A. J. Org. Chem. 1995, 60, 3205 https://doi.org/10.1021/jo00115a042
- Denmark, S. E.; Senanayake, C. B. W. J. Org. Chem. 1993, 58, 1853 https://doi.org/10.1021/jo00059a043
- Denmark, S. E.; Schnute, M. E.; Senanayake, C. B. W. J. Org. Chem. 1993, 58, 1859 https://doi.org/10.1021/jo00059a044
- Brown, S.; Clarkson, S.; Grigg, R.; Thomas, W. A.; Sridharan, V.; Wilson, D. M. Tetrahedron 2001, 57, 1347 https://doi.org/10.1016/S0040-4020(00)01103-0
- Fretwell, P.; Grigg, R.; Sansano, J. M.; Sridharan, V.; Sukirthalingam, S.; Wilson, D.; Redpath, J. Tetrahedron 2000, 56, 7525 https://doi.org/10.1016/S0040-4020(00)00659-1
- Grigg, R.; Dorrity, M. J.; Malone, J. F.; Sridharan, V.; Sukirthalingam, S. Tetrahedron Lett. 1990, 31, 1343 https://doi.org/10.1016/S0040-4039(00)88802-4
- Leonard, N. J.; Felley, D. L. J. Org. Chem. 1950, 72, 2537
- Crich, D.; Ranganathan, K.; Neelamkavil, S.; Huang, X. J. Am. Chem. Soc. 2003, 125, 7942 https://doi.org/10.1021/ja035639s
Cited by
- Highly Regio- and Diastereoselective Construction of Spirocyclopenteneoxindoles through Phosphine-Catalyzed [3 + 2] Annulation of Morita–Baylis–Hillman Carbonates with Isatylidene Malononitriles vol.13, pp.13, 2011, https://doi.org/10.1021/ol201094f
- Recent Advances in Construction of Nitrogen-containing Heterocycles from Baylis-Hillman Adducts vol.43, pp.1, 2011, https://doi.org/10.1080/00304948.2011.549065
- Facile Synthesis of 5-Alkylidene-1,5-dihydropyrrol-2-ones from Morita-Baylis-Hillman Adducts vol.33, pp.4, 2012, https://doi.org/10.5012/bkcs.2012.33.4.1337
- Catalytic Diastereoselective Tandem Conjugate Addition-Elimination Reaction of Morita-Baylis-Hillman C Adducts by CC Bond Cleavage vol.7, pp.4, 2012, https://doi.org/10.1002/asia.201100863
- Diels–Alder dimerization of Morita–Baylis–Hillman acetates catalyzed by organocatalysts vol.39, pp.1, 2013, https://doi.org/10.1007/s11164-012-0626-6
- Synthesis of 2-Benzylidene-7a-alkyltetrahydropyrrolizine-3,5-diones Starting from Baylis—Hillman Adducts. vol.37, pp.51, 2006, https://doi.org/10.1002/chin.200651090
- Stereoselective Synthesis of Homoallyl Nitroalkane Derivatives through Base-Promoted Regioselective Decarboxylation of Baylis-Hillman Derivatives vol.2009, pp.21, 2009, https://doi.org/10.1002/ejoc.200900337
- Synthesis of β,γ-Disubstituted α-Methylene-γ-butyrolactams Starting from the Baylis-Hillman Adducts vol.28, pp.1, 2007, https://doi.org/10.5012/bkcs.2007.28.1.143
- Expeditious Synthesis of 1,3,4-Trisubstituted Pyrazoles from Baylis-Hillman Adducts vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1841
- An Expeditious Synthesis of Substituted Pyrrolidines and Tetrahydrofurans Starting from Baylis-Hillman Adducts vol.28, pp.10, 2006, https://doi.org/10.5012/bkcs.2007.28.10.1844
- Facile Synthesis of 1,2,3,4-Tetrasubstituted Pyrroles from Baylis-Hillman Adducts vol.28, pp.9, 2006, https://doi.org/10.5012/bkcs.2007.28.9.1605
- One-Pot Synthesis of Naphthalenes from Baylis-Hillman Adducts via Pd-Mediated Successive Allylation and Arylation vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2537
- Synthesis of Poly-Substituted Phenolds from Baylis-Hillman Adducts and 1,3-Dinitroalkanes vol.29, pp.3, 2006, https://doi.org/10.5012/bkcs.2008.29.3.701
- Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks vol.64, pp.20, 2008, https://doi.org/10.1016/j.tet.2008.02.087
- An Efficient Synthesis of Functionalized 1,6-Dienes from Baylis-Hillman Adducts via a Pd-Catalyzed Decarboxylative Protonation Protocol vol.31, pp.7, 2006, https://doi.org/10.5012/bkcs.2010.31.7.2057
- One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2006, https://doi.org/10.5012/bkcs.2012.33.6.2079