Synthesis of Cyclopropane Derivatives Starting from the Baylis-Hillman Adducts Using Sulfur Ylide Chemistry

Ka Young Lee, Seung Chan Kim, and Jae Nyoung Kim*
Department of Chemistry and Insilute of Basic Science, Chonnam National University, Gwangin 500-757, Korea
${ }^{*}$ E-mail: kimin@chonnam.ac:kr Received November 7, 2005

Key Words: Cyclopropane, Baylis-F Iillman adducts, Sulfur ylide, Michael acceptor

Cyclopropane moiety is a fundamental class of functional group that is the focus of many organic synthesis programs and performs a key structural role in a wide range of biologically active molecules. ${ }^{1.2}$ The importance of cyclopropanes is rellected in the enormous effort that has been invested in their diastereo- and enantioselective synthesis. ${ }^{1-4}$ In addition, cyclopropane derivatives could be transfomed to structurally diverse compounds. ${ }^{\text {ºn }}$

During the extensive studies on the chemical transtormations of Baylis-Itillman adducts, ${ }^{\text {b }}$ we examined the introduction of cyclopropane moicty at the primary position of Baylis-IIillman adducts to form vinyl cyctopropane derivatives 2 (Scheme 1). Such vinyl cyclopropane backbone is an important entity in many naturally occurring and synthetic pyrethroidal insectides, ${ }^{2 a}$ and could be used for lurther chemical transformations."
Our synthetic rationale is shown in Scheme I. The starting cinnamyl bromide 1a was prepared from the Baylis-IItlman adduct and HBr according to the reported method. ${ }^{7}$ The reaction of 1a and dimethyl sulfide in $\mathrm{CH}_{3} \mathrm{C} . \mathrm{V}$ generated the sulfonium salt (I), which was converted into the corresponding sulfur ylide (II) by treatment with NaOII. The in situgenerated sulfir ylide (II) reacted with methyl vinyl ketone to give the desired cyclopropane derivative 2a in 45% yield as shown in Scheme 1 via the intermediate (III). The synthesis of 2a was carried out in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature within 12 h . Fincouraged by the suceessful results we
prepared other cyelopropane derivatives $\mathbf{2 b}$ - \mathbf{h} and the results are summarized in Table 1.*

The use of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ instead of NaOH I showed similar yield of 2a. Iowever, the use of $\mathrm{K}_{2} \mathrm{CO}_{\text {s }}$ gave 2a in only trace amounts. When we used nitrogen ylide, which was made from the reaction of 1 a and $\mathrm{D} \angle \mathrm{BCO}$ in the presence of NaOII , we could not observe the formation of 2 a at all. Variation of the electron-withdrawing substituents (-COOMe, -COOEL, -COMe, -CN) of the starting materials 1 a-f did not alter the reactivity for the formation of cyclopropanes. Ethyl vinyl ketone (entry 2) could also be used successfully as the Michael acceptor in the reaction with 1a. However, we failed to obtain the corresponding products when we replaced methyl vinyl ketone with other Michacl acceptors such as methyl acrylate, acrylonitrile, and 2-cyclohexen-1one. In these cases we could not observe any major component on TLC. The reason for the tailure could be explained either by the hydrolysis or low reactivity of these Michael acceptors. Fortunately, 2-chloroacrylonitrile could be used as the Michacl acceptor efficiently to give $\mathbf{2 g}$ (entry 7) as inseparable cis-trans mixtures in 57% yield.
The relative stereochemistry of the two substituents of cyclopropane was trans in all cases as reported in similar systems. ${ }^{3.4}$ We could not isolate the other stereoisomer from the reaction mixtures. Further synthetic applications of the eyclopropane products are currently underway.

Scheme 1

Table 1. Synthesis of cyclopropane derivatives
Cntry
"The stereochemistry of double bond of ta-e is Z and that of 1 f is E. "Mes (1.5 equiv), NaOH (1.5 equiv), CII CN, rt, given time. We obtained troms ismers in all eases (exeep for entry 7). "The use of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) instead of NaOH under the same conditions gave 48% of 2 a . " wo stereoisomers were mixed in a ratio of $3: 2$.

Experimental Section

Typical procedure for the synthesis of cimamyl bromide 1a and cyclopropane derivative 2 a . The cinnamyl bromide derivative la was prepared in 92% yield by the treatment of the Baylis-Hillman adduct of benzaldenyde and methyl acrylate with aq $\mathrm{HBr}(\mathrm{rt}, 5 \mathrm{~h}){ }^{7}$. Synthesis of $\mathbf{1 b}$-f was also carried out similarly with HBr at room temperature (5$16 \mathrm{~h}, 85-95 \%$). To a stirred solution of 1 a ($254 \mathrm{mg}, 1.0$ mmol) and methyl vinyl ketone ($105 \mathrm{mg}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added successively dimethyl sulfide (93 $\mathrm{mg}, 1.5 \mathrm{mmol}$) and NaOH ($60 \mathrm{mg}, 1.5 \mathrm{mmol}$) at room
temperature. The reaction mixture was stirred for 12 h at room temperature. After the normal aqueous workup and column chromatographic purification process (hexanes/ether $=10: 1$) we obtained 2 a as clear oil, 110 mg (45%). Synthesis of $\mathbf{2 b}$-li was carried out similarly and the spectroscopic data of $2 a-l$ are as follows.
Compound 2a: 45\%: clear oil; $\operatorname{IR}(\mathrm{KBr})$ 1712, 1628, 1254 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.90-0.97(\mathrm{~m}, 1 \mathrm{H})$, 1.47-1.53 (m, 1H), 1.94-2.04 (m, 1H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 2.29-$ $2.36(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 7.34-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 75 \mathrm{MHz}\right) \delta 19.98,23.33$, $31.01,31.99,52.23,128.46,129.16,130.20,130.34,134.70$,
142.18, 168.16, 207.70; ESIMS $m / z 245\left(\mathrm{M}^{-}+\mathrm{H}\right)$.

Compound 2b: 42\%; clear oil; IR (KBr) 1712, 1628, 1254 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.89-0.95(\mathrm{~m}, 1 \mathrm{H}), 1.05$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.45-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.98(\mathrm{~m}, 1 \mathrm{H})$, $2.29-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{qd}, J=7.2$ and $2.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.81 (s , $3 \mathrm{H}), 7.33-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 7.71,19.58,22.67,30.91,36.89,51.98$. $128.19,128.90,130.01,130.28,134.53,141.90,167.99$. 210.02; ESIMS mz $259\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

Compound $2 \mathrm{c}: 47 \%$; clear oil; IR (KBr) $1712,1254 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.91-0.98(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.54$ $(\mathrm{m}, 1 \mathrm{H}), 1.96-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.34(\mathrm{~m}, 1 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 75 MHz) $\delta 20.02,21.57,23.44,31.00,32.18,52.12,129.14$. $129.30,130.34,131.77,139.45,142.26,168.27,207.75$; ESIMS mz $259\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

Compound 2d: 49%; clear oil; IR (KBr) 1712, $1254 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.89-0.95(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.53$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.32(\mathrm{~m}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}) .7 .35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.7 \mathrm{~Hz}$. $2 \mathrm{H}), 7.69(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $19.79,23.11,31.05,32.04,52.29,128.70,130.84,131.50$. $133.03,135.14,140.68,167.86,207.47$; ESIMS m/z 279 $\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Compound 2e: 54%; clear oil; $\operatorname{IR}(\mathrm{KBr}) 1705,1250 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.3,300 \mathrm{MHz}\right) \delta 0.90-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}$. $3 \mathrm{H}), 2.32-2.36(\mathrm{~m}, 1 \mathrm{H}), 4.27$ (qd, $J=7.2$ and $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.76(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.43,20.02,23.25,30.92,31.91,61.01$. $128.32,128.98,130.09,130.50,134.63,141.80,167.58$. 207.66; ESIMS miz $259\left(\mathrm{M}^{+}-\mathrm{H}\right)$.

Compound 2f: 45%; clear oil; $\mathbb{R}(\mathrm{KBr}) 1697,1666,1612$, $1238 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.83-0.89(\mathrm{~m}$, $1 \mathrm{H}), 1.46-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$. $2.27-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 7.35-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{~d}$. $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3,}, 75 \mathrm{MHz}\right) \dot{\delta} 19.87,22.81$. $27.00,30.85,31.60,128.32,129.11,130.03,134.51,138.86$, $141.50,199.55,207.63$; ESIMS $m / z 229\left(\mathrm{M}^{-}+\mathrm{H}\right)$.

Compound 2g: 57\% (3:2 mixture); clear oil; IR (KBr) $2241,1716,1261 \mathrm{~cm}^{-1}$; major isomer: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.16(\mathrm{dd}, J=9.0$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=9.9$ and $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{td}, J=9.6$ and 2.1 Hz . $1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$; minor isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.47(\mathrm{dd}, J=8.7$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ (dd, $J=9.6$ and $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{td}, J=9.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.40,21.43,25.74,26.35,26.68,29.24$, $31.16,31.54,52.41(2 \mathrm{C}), 116.85,118.73,123.51,123.57$. $128.83,129.19,129.93,130.21,130.34,130.48,140.19$. $140.37,145.23,145.38,166.86,167.29$; ESIMS $m / z 276$ $\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 2h: 48\%; clear oil; \mathbb{R} (KBr) 2214, 1701, 1184
$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.41-1.47(\mathrm{~m}, 1 \mathrm{H})$, 1.53-1.59 (m, 1H), 2.31-2.42 (m, 2H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 7.10(\mathrm{~s}$, $1 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}$ ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 16.69,27.98,28.61,31.03,110.84$, $116.06,128.47,128.78,130.13,133.14,143.52,205.70$; ESIMS $m / 2212\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Acknowledgments. This work was supported by the grant (R-05-2003-000-10042-0) from the Basic Research Program of the Korea Science and Engineering Foundation (Now controlled under the authority of Korea Research Foundation). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For reviews, see (a) Donaldson, W. A. Tetrahedron 2001, 57, 8589. (b) Salaun, J. Chem. Rev, 1989, 89, 1247. (c) Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341.
2. For the biologically active cyclopropane derivatives, see (a). Kondo, K.; Matsui, K.: Takahatake, Y. Tetrahedron Lett. 1976, 17, 4359. (b) Midura, W. H.; Mikolajczyk, M. Tetrahedron Lett. 2002, 43, 3061 . (c) Cebula, R. E. J.: Hanna, M. R.; Theberge, C. R.: Verbichy, C. A.; Zercher, C. K. Tetrahedrort Lett. 1996, 37, 8341.
3. For the synthesis of cyclopropane compounds, see (a) Bremeyer, N.: Smith, S. C.: Ley, S. V.: Gaunt, M. J. Angen: Chen. Int. Ed. 2004, 43, 2681. (b) Oswald, M. F.: Raw, S. A.: Taylor, R. J. K. (hem. Conmmin, 2005, 2253. (c) Oswald, M. F.; Raw, S. A.: Taylor, R. J. K. Org. Letl. 2004, 6, 3997 . (d) Jain, S. L.; Sain, B. Tetrahedron Lett. 2005, 46, 37. (e) Jonczyk, A.; Konarsha, A. Svilett 1999, 1085. (f) Papageorgiou, C. D.; Ley, S. V.; Gaunt, M. J. Angew. Chem. Int. Ed. 2003, 42, 828.
4. For leading references of cyclopropane synthesis involving ylide chemistry, (a) Liao, W.-W., Li, K.: Tang, Y. J. Am. Chem. Soc. 2003, 125,13030 . (b) Muller, P.; Ghanein, A. Org. Lett. 2004, 6, 4347. (c) Avery, T. D.; Fallon, G.; Greatrex, B. W.; Pyke, S. M.; Taylor, D. K.; Tiekink, E. R. T. J. Org. Chem. 2001, 66, 7955. (d) Ye, S.: Huang, Z.-Z.: Xia, C.-A.; Tang, Y.: Dai, L.-X. J. An. Chen. Soc. 2002, 124, 2432. (e) Kowalkowska, A.: Sucholbiak, D.: Jonczyk, A. Etim J. Org. Chem. 2005, 925.
5. For the examples of synthetic applications of cyclopropanes, see (a) Honda, M.; Naitou, T.; Hoshino, H.; Takagi, S.; Segi, M.; Nakajima, T. Tetrahedron Letl. 2005, 46, 7345. (b) Leroy, B. Temahedron Letr. 2005, 46, 7563. (c) Hubner, J.: Liebscher, J.: Patzel, M. Tenahedron 2002, 58, 10485. (d) Lee, P. H.; Kim, J. S.: Kim, Y. C.; Kim, S. Tetrahedron Lett. 1993, 34, 7583. (e) Bernard, A. M.; Frongia, A.; Piras, P. P.; Secci, F.; Spiga, M. Org. Lett. 2005, 7, 4565.
6. For our recent publications on the chemical transformations of Baylis-Hillman adducts, see (a) Gowrisankar, S.: Lee, K. Y.: Kim, J. N. Temahedron Lett. 2005, 46, 4859. (b) Lee, K. Y.: Gowrisankar, S.: Kim, J. N. Tetrahedron Lett. 2005, 46, 5387. (c) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493. (d) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bu/l. Korear Chen. Soc. 2005, 26, 1481 and further references cited therein.
7. For the synthesis of cinnamyl bromides from the Baylis-Hillman adducts, see (a) Basavaiah, D.: Hyma, R. S.: Padmaja, K.: Krishnamacharyulu, M. Temahedron 1999, 55, 6971. (b) Crist, R. M.; Reddy, P. V.; Borhan, B. Tetrahedron Lett. 2001, 42, 619. (c) Buchholz, R.; Hoffinamn, H. M. R. Helv: Chim, Acta 1991, 74, 1213.
8. The yields of 2 a-h were moderate due to the formation of many intractable side products.
