Synthesis of Hexahydrofuro[2,3-b]furan and Hexahydrofuro[2,3-b]pyran Derivatives Starting from Baylis-Hillman Adducts via the Ueno-Stork Reaction

Saravanan Gowrisankar, Ka Young Lee, and Jae Nyoung Kim*
Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Korea
*E-mail: kimjn@chonnam.ac.kr
Received March 13, 2006

Key Words : Furofurans, Furopyrans, Baylis-Hillman adducts, Ueno-Stork reaction, Radical cyclization

Fused polycyclic acetals are embodied in a wide range of natural products. Among bicyclic acetals, furofuran and furopyran derivatives are of special interest since both aliphatic and benzoannelated compounds of biological and pharmaceutical activity are known. ${ }^{14}$ Especially, the hexahydrofurofuran unit is present in many biologically active natural products. ${ }^{\text {1d, } 1 \mathrm{e}}$ Some representative examples are communiol D, lupulin A, and asteltoxin as shown in Figure 1. ${ }^{1 d, 1 e}$

During the investigation of radical cyclization of the suitably modified Baylis-Hillman adducts, ${ }^{5}$ we reasoned that we could synthesize a variety of furofuran and furopyran derivatives by following the Scheme 1 . We reasoned that synthesis of bromoacetals from cinnamyl alcohols and 2,3dihydrofuran or 3,4 -dihydro- $2 H$-pyran ${ }^{4,6}$ and the following radical cyclization (Ueno-Stork reaction) ${ }^{3}$ would give the
desired furofuran or furopyran derivatives. ${ }^{2}$ The use of cinnamyl alcohol derivative like $\mathbf{1 a}$ as the starting material would afford the furofuran or furopyran derivatives having the ester functionality at the 3-position, which could be functionalized for further transformations.

The reaction of the cinnamyl alcohol 1a, ${ }^{7}$ which was prepared from the Baylis-Hillman adduct of benzaldehyde and methyl acrylate, and 3,4-dihydro-2 H -pyran in the presence of NBS (N -bromosuccinimide) in acetonitrile at room temperature gave the desired bromoacetal 2a in moderate yield (74\%). As reported, 2a was obtained as a trans isomer via the ring opening reaction of the intermediate bromonium ion. ${ }^{3,4,6}$ With bromoacetal 2a in our hand we tried radical cyclization (Ueno-Stork reaction) under the typical condition, n - $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ in refluxing benzene. As expected, we could obtain the diastereomeric

Figure 1

Scheme 1

Table 1. Synthesis of furopyran and furofuran derivatives
Entry
${ }^{a}$ Isolated yields and we showed the structures of the major isomers of $\mathbf{3 a - c}$ and $\mathbf{3 e}$. ${ }^{b}$ The other diastereomer was not isolated. ${ }^{c}$ The two diastereomers were not separated.
mixtures of products 3a and 3a' in 45 and $\mathbf{2 6 \%}$, respectively. The two protons at the ring junction of $\mathbf{3 a}$ and $\mathbf{3 a}$ must be cis-relationships based on the previous reports and the small coupling constants between the protons at the ring junction. ${ }^{14}$ The coupling constants of $\mathbf{3 a}$ and $\mathbf{3 a} \mathbf{a}^{\prime}$ between the two protons at the ring junction were 3.9 and 4.2 Hz , respectively. Thus, the relationships of $\mathbf{3 a}$ and $\mathbf{3 a} \mathbf{a}^{\prime}$ must be diastereomers having different stereochemistry at the 3position as shown in Table 1 (entry 1). Encouraged by the successful results we synthesized starting materials 2b-e and examined the synthesis of a variety of fused ring systems. The results are summarized in Table 1.

For the reaction of $\mathbf{2 b}$, which was derived from the reaction of $\mathbf{1 a}$ and 2,3-dihydrofuran (entry 2), we obtained $\mathbf{3 b}$ and $\mathbf{3} \mathbf{b}^{\prime}$ in 43 and 41%, respectively. In this case, the stereoselectivity was almost lost. However, when we used 2c as the starting material, we could isolate only 3 c in 75% yield to our surprise (entry 3). ${ }^{8}$ We could not isolate the other stereoisomer 3c'. From the NOE experiments of 3c we confirmed the structure as shown in Figure 2. In the reaction

Figure 2
of 2d, the two isomers $\mathbf{3 d}$ and $\mathbf{3 d}$ ' have almost same R_{f} values and we could not separate them (entry 4). When we used $\mathbf{2 e}$, which was synthesized from $\mathbf{1 a}$ and tri- O-benzyl-D-glucal, we isolated $\mathbf{3 e}$ and $\mathbf{3 e}$ ' in 74 and 20%, respectively (entry 5).

In summary, we prepared some oxabicyclic compounds by using the Ueno-Stork radical cyclization reaction of bromoacetals, which were prepared starting from the Baylis-

Notes
Hillman adducts. Further studies on the synthetic applications of this protocol are currently underway.

Experimental Section

Typical synthetic procedure for the bromoacetal 2a. To a stirred solution of cinnamyl alcohol $\mathbf{1 a}(192 \mathrm{mg}, 1 \mathrm{mmol})$ and 3,4-dihydro- 2 H -pyran ($168 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(2$ mL) was added NBS ($354 \mathrm{mg}, 2 \mathrm{mmol}$) and stirred at room temperature for 4 h . After the usual aqueous extractive workup with ether and column chromatographic purification process (hexanes/ether, $9: 2$), desired bromoacetal 2a was obtained as clear oil, 262 mg (74%). Other bromoacetals 2be were synthesized similarly and the spectroscopic data are as follows.
Compound 2a: 74\%; oil; IR (neat) 2951, 1716, 1238, 1026 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.51-1.63(\mathrm{~m}, 1 \mathrm{H})$, 1.86-2.01 (m, 2H), 2.35-2.46 (m, 1H), 3.54-3.62 (m, 1H), $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.57$ $(\mathrm{m}, 5 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 23.34$, 30.29, 49.24, 52.12, 62.66, 62.77, 101.29, 128.22, 128.49, 129.32, 129.69, 134.46, 144.62, 167.79.

Compound 2b: 51\%; oil; IR (neat) 1716, 1238, $1022 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.20-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.30(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{~d}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55$ (d, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (s, 1H), 7.37-7.50 $(\mathrm{m}, 5 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 33.85$, 49.96, 52.21, 61.65, 66.90, 108.63, 128.22, 128.53, 129.44, 129.67, 134.53, 144.48, 167.80.

Compound 2c: 60\%; oil; IR (neat) 2958, 2214, $1030 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.21-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.78$ (m, 1H), 4.11-4.33 (m, 3H), $4.25(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.79(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 33.74,49.61,67.27$, $68.23,107.74,107.83,117.50,128.91,129.05,130.80$, 132.80, 145.37.

Compound 2d: 70\%; oil; IR (neat) 1716, 1238, $1115 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.41-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.41(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.37-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 15.07$, 31.70, 52.17, 61.20, 62.66, 101.80, 127.97, 128.56, 129.48, 129.81, 134.44, 145.04, 167.83.

Compound 2e: 67%; oil; IR (neat) $1712,1115 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.65-4.05(\mathrm{~m}, 5 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $4.29(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.73(\mathrm{~m}$, $6 \mathrm{H}), 4.86(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.14-7.44 (m, 20H), $7.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 51.53,52.23,62.55,68.72,71.25,72.58,73.39$, $74.50,75.21,100.40,127.44,127.60,127.68,127.78$, 127.94, 127.97, 128.05, 128.25, 128.28, 128.40, 128.66, $129.45,129.48,134.46,137.76,138.36,138.39,144.80$, 167.57.

Typical procedure for the radical cyclization of 2a to 3a and 3a'. A stirred mixture of bromoacetal 2a ($177 \mathrm{mg}, 0.5$ $\mathrm{mmol})$, $\operatorname{AIBN}(16 \mathrm{mg}, 0.1 \mathrm{mmol})$, and $n-\mathrm{Bu}_{3} \mathrm{SnH}(160 \mathrm{mg}$,
0.55 mmol) in benzene (3 mL) was heated to reflux for 2 h . After the usual aqueous extractive workup with ether and column chromatographic purification process (hexanes/ EtOAc, $9: 1$), desired products 3a ($62 \mathrm{mg}, 45 \%$) and 3a' (36 $\mathrm{mg}, 26 \%$) were obtained. Other compounds were synthesized similarly and the spectroscopic data are as follows. We could not separate $\mathbf{3 d}$ and $\mathbf{3 d} \mathbf{d}^{\prime}$ in pure states. R_{f} values for $\mathbf{3}$ and 3^{\prime} were checked (hexanes/EtOAc, $6: 4$) and reported together.

Compound 3a: 45\%; oil; $\mathrm{R}_{\mathrm{f}}=0.53$; IR (neat) 2951, 1732, $1153,1022 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.59-1.81$ $(\mathrm{m}, 3 \mathrm{H}), 1.95-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.62-$ $3.68(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.26$ (m, 5H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.11,23.11,37.43$, 41.01, 52.08, 57.41, 61.40, 71.62, 101.24, 126.89, 128.47, 128.97, 136.89, 174.82; ESIMS $m / z 277.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 3a': 26%; white solid, $\mathrm{mp} 130-132{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.56 ; IR (neat) 2947, 1728, 1200, $1026 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.49-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.87(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.18 (m, 1H), $2.87(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 21.54, 22.46, 42.20, 42.93, 51.59, 58.11, 60.92, 69.11, 100.87, 127.05, 128.42, 129.62, 136.50, 172.55.

Compound 3b: 43%; oil; $\mathrm{R}_{\mathrm{f}}=0.50$; IR (neat) 2954, 1732, $1207,1011 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.02-2.15$ (m, 2H), 2.97 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.28-3.36 (m, 1H), $3.62(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.86-3.94 (m, 1H), 4.01-4.09 (m, 1H), $4.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.70(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 26.18,36.89,47.97,52.26,59.02,68.77$, $74.14,109.43,126.96,128.53,128.80,136.63,174.81$; ESIMS m/z $263.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 3b': 41\%; white solid, mp $95-98^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.53$; IR (neat) 2954, 1732, 1088, $1011 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 1.57-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J$ $=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.81-4.00(\mathrm{~m}, 4 \mathrm{H}), 5.82(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, 1 H), 7.06-7.30 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 28.50, 42.28, 51.67, 59.70, 68.33, 69.44, 77.20, 108.57, 127.08, 128.44, 129.63, 136.56, 172.79.

Compound 3c: 75%; white solid, $\mathrm{mp} 70-72{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.23$; IR (neat) 2958, 2877, 2237, $1014 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 2.04-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90-3.98(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.09(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 25.56,36.72,48.50,51.41,68.94,74.09,109.24,122.64$, 127.84, 128.90, 129.38, 134.68; ESIMS m/z $230.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 3d + 3d' (as a mixture): 86%; oil; $\mathrm{R}_{\mathrm{f}}=0.72$; IR (neat) 2951, 1736, 1207, $1115 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}) \delta 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1.5 \mathrm{H})$, $1.92(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.14(\mathrm{dd}, J=13.8$ and 5.4 Hz , $0.5 \mathrm{H}), 2.36(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.64(\mathrm{dd}, J=13.8$ and 5.4
$\mathrm{Hz}, 0.5 \mathrm{H}), 2.96(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.03(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.05(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.19(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $0.5 \mathrm{H}), 3.36-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 1.5 \mathrm{H}), 3.67(\mathrm{~s}, 1.5 \mathrm{H})$, 3.70-3.89 (m, 2H), 4.16-4.24 (m, 1H), 5.14-5.18 (m, 1H), 7.05-7.30 (m, 5H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 15.12$, $15.25,41.16,41.86$ (overlapped), 43.07, 51.85, 52.11, 54.68, $55.89,62.75,63.41,71.33,73.95,103.41,104.30,126.78$, 126.90, 128.35 (overlapped), 129.22, 129.48, 137.12, 137.44, 174.38, 175.24; ESIMS $m / z 265.1\left(\mathrm{M}^{+}+\mathrm{H}\right)$.

Compound 3e: 74%; white solid, mp $105-108{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}=$ 0.50 ; IR (neat) 2920, 1732, $1092 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 2.83-2.89(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.95(\mathrm{~m}, 5 \mathrm{H}), 4.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.77$ (m, 4H), $5.12(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.97-7.01 (m, 2H), 7.15-7.35 (m, 18H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}) \delta 38.26,49.75,52.21,57.95,68.40,71.67,71.73$, $72.92,73.61,74.36,77.97,78.76,101.17,126.96,127.31$, 127.53, 127.67, 127.73, 127.81, 127.89, 128.37, 128.46, 129.01, 136.51, 137.84, 138.18, 174.05 (three carbons were overlapped); ESIMS m/z $609.3\left(\mathrm{M}^{+}+\mathrm{H}\right)$.
Compound 3e': 20\%; oil; $\mathrm{R}_{\mathrm{f}}=0.48$; IR (neat) 1732, 1095 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.20-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.30$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.79(\mathrm{~m}, 4 \mathrm{H}), 4.02-$ $4.04(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 4.52-4.66(\mathrm{~m}, 5 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (d, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.11$ (m, 2H), 7.17-7.37 (m, 18H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 37.76$, 52.12, 56.08, 69.69, 72.21, 73.37, 73.93, 74.57, 75.76, $79.27,102.45,126.47$, 127.48, 127.61, 127.78, 127.95, $128.05,128.22,128.28,128.37,129.71,137.91,137.98$, 138.06, 138.21, 175.24 (four carbons were overlapped).

Acknowledgments. This study was financially supported by Chonnam National University (2005). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For the synthesis and biological importances of furofuran and furopyran skeletons, see (a) Roggenbuck, R.; Schmidt, A.; Eilbracht, P. Org. Lett. 2002, 4, 289. (b) Yanada, R.; Koh, Y.; Nishimori, N.; Matsumura, A.; Obika, S.; Mitsuya, H.; Fujii, N.; Takemoto, Y. J. Org. Chem. 2004, 69, 2417. (c) Kumari, G. N. K.; Balachandran, J.; Aravind, S.; Ganesh, M. R. J. Agric. Food Chem. 2003, 51, 1555. (d) Enomoto, M.; Nakahata, T.; Kuwahara, S. Tetrahedron 2006, 62, 1102. (e) Lorenzo, E.; Alonso, F.; Yus, M. Tetrahedron 2000, 56, 1745, and further references cited therein.
2. (a) Fujita, K.; Nakamura, T.; Yorimitsu, H.; Oshima, K. J. Am.

Chem. Soc. 2001, 123, 3137. (b) Fujita, K.; Yorimitsu, H.; Oshima, K. Synlett 2002, 337. (c) Takami, K.; Mikami, S.; Yorimitsu, H.; Shinokubo, H.; Oshima, K. Tetrahedron 2003, 59, 6627. (d) Hayashi, Y.; Shinokubo, H.; Oshima, K. Tetrahedron Lett. 1988, 39, 63. (e) Clive, D. L. J.; Zhang, J.; Subedi, R.; Bouetard, V.; Hiebert, S.; Ewanuk, R. J. Org. Chem. 2001, 66, 1233. (f) Sharma, G. V. M.; Krishnudu, K. Carbohydr. Res. 1995, 268, 287. (g) Torii, S.; Inokuchi, T.; Yukawa, T. J. Org. Chem. 1985, 50, 5875. (h) Kelly, D. R.; Picton, M. R. J. Chem. Soc., Perkin Trans. 1 2000, 1559. (i) Mayer, S.; Prandi, J. Tetrahedron Lett. 1996, 37, 3117. (j) Morikawa, T.; Nishiwaki, T.; Iitaka, Y.; Kobayashi, Y. Tetrahedron Lett. 1987, 28, 671. (k) Rhode, O.; Hoffmann, H. M. R. Tetrahedron 2000, 56, 6479. (1) Hoffmann, H. M. R.; Herden, U.; Breithor, M.; Rhode, O. Tetrahedron 1997, 53, 8383. (m) Kelly, D. R.; Picton, M. R. J. Chem. Soc., Perkin Trans. 1 2000, 1571. (n) Inokuchi, T.; Kawafuchi, H. Synlett 2001, 421. (o) Mesmaeker, A. D.; Hoffmann, P.; Ernst, B. Tetrahedron Lett. 1988, 29, 6585. (p) Tenaglia, A.; Barille, D. Synlett 1995, 776. (q) Marco-Contelles, J. Chem. Сoтmun. 1996, 2629. (r) Wakabayashi, K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374.
3. For the Ueno-Stork reaction, see (a) Salom-Roig, X. J.; Denes, F.; Renaud, P. Synthesis 2004, 1903. (b) Villar, F.; Equey, O.; Renaud, P. Org. Lett. 2000, 2, 1061. (c) Villar, F.; Renaud, P. Tetrahedron Lett. 1998, 39, 8655. (d) Villar, F.; Andrey, O.; Renaud, P. Tetrahedron Lett. 1999, 40, 3375. (e) Villar, F.; Kolly-Kovac, T.; Equey, O.; Renaud, P. Chem. Eur. J. 2003, 9, 1566. (f) Corminboeuf, O.; Renaud, P.; Schiesser, C. H. Chem. Eur. J. 2003, 9, 1578.
4. For the assignment of stereochemistry of D-glucal derivatives, see (a) Horton, D.; Priebe, W.; Sznaidman, M. Carbohydr. Res. 1990, 205, 71. (b) Mayer, S.; Prandi, J.; Bamhaoud, T.; Bakkas, S.; Guillou, O. Tetrahedron 1998, 54, 8753. (c) Tatsuta, K.; Fujimoto, K.; Kinoshita, M.; Umezawa, S. Carbohydr. Res. 1977, 54, 85. (d) Bellucci, G.; Chiappe, C.; D'Andrea, F.; Lo Moro, G. Tetrahedron 1997, 53, 3417.
5. For our recent publications on the radical cyclization using BaylisHillman adducts, see (a) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859. (b) Park, D. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1440. (c) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481.
6. For the synthesis of bromoacetals, see (a) Ueno, Y.; Chino, K.; Watanabe, M.; Moriya, O.; Okawara, M. J. Am. Chem. Soc. 1982, 104, 5564. (b) Stork, G.; Mook, R., Jr.; Biller, S. A.; Rychnovsky, S. D. J. Am. Chem. Soc. 1983, 105, 3741. (c) Dulcere, J.-P.; Agati, V.; Rodriguez, J. J. Chem. Soc., Chem. Commun. 1993, 1038. (d) Baguley, P. A.; Walton, J. C. J. Chem. Soc., Perkin Trans. 1 1998, 2073.
7. For the synthesis of cinnamyl alcohol derivatives from the BaylisHillman adducts, see Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 413 and further references cited therein.
8. We calculated the relative energies of $\mathbf{3 c}$ and $\mathbf{3} \mathbf{c}^{\prime}$ by using MM2 and found that $\mathbf{3 c}$ was more stable than $\mathbf{3} \mathbf{c}^{\prime}$ in about $3.0 \mathrm{kcal} / \mathrm{mol}$. The difference in energy might result in the selective formation of 3c. More precise energy calculations will be carried out in due course.

