DOI QR코드

DOI QR Code

The Effect of pH-adjusted Gold Colloids on the Formation of Gold Clusters over APTMS-coated Silica Cores

  • Park, Sang-Eun (Dept. of Chemical and Bio Engineering, Kyungwon University) ;
  • Park, Min-Yim (Dept. of Chemical and Bio Engineering, Kyungwon University) ;
  • Han, Po-Keun (Dept. of Chemical and Bio Engineering, Kyungwon University) ;
  • Lee, Sang-Wha (Dept. of Chemical and Bio Engineering, Kyungwon University)
  • 발행 : 2006.09.20

초록

An electrostatic interaction is responsible for the attachment of gold seeds of 1-3 nm onto APTMS (3-aminopropyl trimethoxysilane)-coated silica cores in the formation of gold clusters. A surface plasmon resonance and morphology of gold clusters were significantly affected by the pH of gold colloids prepared by THPC reducing agent. Gold colloids of alkaline pH induced the heterogeneous deposition of gold seeds onto the silica nanoparticles, probably due to the continuous reduction of residual gold ions during the attachment process. Gold colloids of acidic pH induced the monodisperse deposition of gold seeds, consequently leading to the formation of smooth gold layer on the silica nanoparticles surface. The gold nanoshells (core radius = 80 nm) prepared by gold colloids of pH 3.1 exhibited the more red-shift and relatively stronger intensity of plasmon absorption bands, compared with gold nanoshells prepared by alkaline gold colloids of pH 9.7.

키워드

참고문헌

  1. Zhu, M.; Qian, G.; Hong, Z.; Wang, Z.; Fan, X.; Wang, M. J. Phys. Chem. of Solids 2005, 66, 748 https://doi.org/10.1016/j.jpcs.2004.09.013
  2. Pham, T.; Jackson, J. B.; Halas, N. J.; Lee, T. R. Langmuir 2002, 18, 4915 https://doi.org/10.1021/la015561y
  3. Jackson, J. B.; Halas, N. J. J. Phys. Chem. 2001, 105, 2743 https://doi.org/10.1021/jp003868k
  4. Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters in Springer Series in Materials Science; Springer-Verlag: Berlin, Germany, 1995
  5. Halas, N. J. Plasmonics: Metallic Nanostructures and Their Optical Properties in Proceedings of SPIE (Vol. 5221); Bellinghsm: USA, 2003
  6. Averitt, R. D.; Oldenburg, S. J.; Westcott, S. L.; Lee, T. R.; Halas, N. J. NASA Conference Publication 1999, 209092, 301
  7. Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J. Chem. Phy. Letters 1998, 288, 243 https://doi.org/10.1016/S0009-2614(98)00277-2
  8. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419 https://doi.org/10.1126/science.1089171
  9. Pol, V. G.; Gedanken, A.; Calderon-Moreno, J. Chem. Mater. 2003, 15, 1111 https://doi.org/10.1021/cm021013+
  10. Kim, H. J.; Kang, J.; Park, D. G.; Kweon, H. J.; Klabunde, K. J. Bull. Korean Chem. Soc. 1997, 18, 831 https://doi.org/10.1007/BF02705604
  11. Jang, N. H. Bull. Korean Chem. Soc. 2004, 25, 1392 https://doi.org/10.5012/bkcs.2004.25.9.1392
  12. Wang, Y.; Xie, X.; Wang, X.; Ku, G.; Gill, K. L.; O'Neal, D. P.; Stoica, G.; Wang, L. V. Nano Letters 2004, 4, 1689 https://doi.org/10.1021/nl049126a
  13. Sershen, S. R.; Westcott, S. L.; Halas, N. J.; West, J. L. J. of Biomed. Mater. Res. 2000, 51, 293 https://doi.org/10.1002/1097-4636(20000905)51:3<293::AID-JBM1>3.0.CO;2-T
  14. Caruso, F. Adv. Mater. 2001, 13, 11 https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  15. Shi, W.; Sahoo, Y.; Swihart, M. T.; Prasad, P. N. Langmuir 2005, 21, 1610 https://doi.org/10.1021/la047628y
  16. Lim, Y. T.; Park, O. O.; Jung, H. T. J. Colloid Interface Sci. 2003, 263, 449 https://doi.org/10.1016/S0021-9797(03)00322-9
  17. Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J. J. Am. Chem. Soc. 1996, 118, 1148 https://doi.org/10.1021/ja952233+
  18. Grabar, K. C.; Allison, K. J.; Baker, B. E.; Bright, R. M.; Brown, K. R.; Freeman, R. G.; Fox, A. P.; Keating, C. D.; Musick, M. D.; Natan, M. J. Langmuir 1996, 12, 2353 https://doi.org/10.1021/la950561h
  19. Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J. Chemical Physics Letters 1999, 300, 651 https://doi.org/10.1016/S0009-2614(98)01410-9
  20. Westcott, S. L.; Oldenburg, S. J.; Lee, T. R.; Halas, N. J. Langmuir 1998, 14, 5396 https://doi.org/10.1021/la980380q
  21. Stober, W.; Fink, A. J. Colloid Interface Sci. 1967, 26, 62
  22. Duff, D. G.; Baker, A.; Edwards, P. P. J. Chem. Soc., Chem. Commun. 1993, 96
  23. van Blaaderen, A.; Vrij, A. J. Journal of Colloid Interface Sci. 1993, 156, 1 https://doi.org/10.1006/jcis.1993.1073
  24. Kreibig, U.; Genzel, L. Surf. Sci. 1985, 156, 678 https://doi.org/10.1016/0039-6028(85)90239-0
  25. Brown, K. R.; Walter, D. G.; Natan, M. J. Chem. Mater. 2000, 12, 306 https://doi.org/10.1021/cm980065p
  26. Duff, D. G.; Baiker, A. Langmuir 1993, 9, 2301 https://doi.org/10.1021/la00033a010

피인용 문헌

  1. Simple Strategy for Preparation of Core Colloids Modified with Metal Nanoparticles vol.111, pp.9, 2007, https://doi.org/10.1021/jp067077f
  2. Relative parameter contributions for encapsulating silica-gold nanoshells by poly(N-isopropylacrylamide-co-acrylic acid) hydrogels vol.17, pp.5, 2009, https://doi.org/10.1007/BF03218867
  3. Designing Zirconium Coated Polystyrene Colloids and Application vol.2009, pp.1687-7268, 2009, https://doi.org/10.1155/2009/514947
  4. One-step deposition of Au nanoparticles onto chemically modified ceramic hollow spheres via self-assembly vol.7, pp.1, 2012, https://doi.org/10.1080/17458081003752962
  5. core and Ag Shell for the Development of Fingerprints vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1457
  6. -Weighted Magnetic Resonance Imaging vol.10, pp.19, 2014, https://doi.org/10.1002/smll.201303868
  7. Designing Hollow Nano Gold Golf Balls vol.6, pp.13, 2014, https://doi.org/10.1021/am502519x
  8. Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine vol.182, pp.7-8, 2015, https://doi.org/10.1007/s00604-015-1453-4
  9. Coating nonfunctionalized silica spheres with a high density of discrete silver nanoparticles vol.18, pp.3, 2016, https://doi.org/10.1007/s11051-016-3371-8
  10. Seed mediated growth of gold nanorods: towards nanorod matryoshkas vol.191, pp.1364-5498, 2016, https://doi.org/10.1039/C6FD00145A
  11. Synthesis of silica-core gold nanoshells and some modifications/variations vol.49, pp.3-4, 2016, https://doi.org/10.1007/s13404-016-0188-2
  12. Upconversion nanoparticle-decorated gold nanoshells for near-infrared induced heating and thermometry vol.5, pp.34, 2017, https://doi.org/10.1039/C7TB01621B
  13. Gold-Embedded Hollow Silica Nanogolf Balls for Imaging and Photothermal Therapy vol.9, pp.33, 2017, https://doi.org/10.1021/acsami.7b08398
  14. Recent Developments in the Biosynthesis of Cu-based Recyclable Nanocatalysts Using Plant Extracts and their Application in the Chemical Reactions pp.15278999, 2018, https://doi.org/10.1002/tcr.201800069
  15. Use of gold nanoshells in solid-phase immunoassay vol.3, pp.7-8, 2008, https://doi.org/10.1134/S1995078008070057
  16. Method for detection of thiol-containing amino acids using gold–polystyrene composites vol.15, pp.4, 2009, https://doi.org/10.1007/s11581-008-0296-y
  17. Self-Assembled Two-Dimensional Array of Gold Nanoparticles with Different Size for the Sensing Application vol.48, pp.6, 2009, https://doi.org/10.1143/JJAP.48.06FF14
  18. Phase Contrast Imaging of a Single Cell Expressing Cancer Markers in Its Specific Area Using Gold Nanoshells vol.28, pp.6, 2006, https://doi.org/10.5012/bkcs.2007.28.6.909
  19. Fabrication of Double-Doped Magnetic Silica Nanospheres and Deposition of Thin Gold Layer vol.30, pp.4, 2006, https://doi.org/10.5012/bkcs.2009.30.4.869
  20. Limitations on the Optical Tunability of Small Diameter Gold Nanoshells vol.25, pp.19, 2006, https://doi.org/10.1021/la901249j
  21. PREPARATION AND CHARACTERIZATION OF CHITOSAN-GOLD NANOCOMPOSITES FOR DRUG DELIVERY APPLICATION vol.17, pp.2, 2006, https://doi.org/10.1142/s0218625x10013643
  22. Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction vol.6, pp.1, 2006, https://doi.org/10.1186/1556-276x-6-428
  23. Colorimetric Determination of pH Values using Silver Nanoparticles Conjugated with Cytochrome c vol.32, pp.9, 2006, https://doi.org/10.5012/bkcs.2011.32.9.3433
  24. Optimizing Surface-Enhanced Raman Scattering-Active Au Nanostructures Coated on Indium-Doped Tin Oxide Glass by Combining Chemical Assembly and Electrodeposition Methods vol.52, pp.10, 2013, https://doi.org/10.7567/jjap.52.10md02
  25. Green synthesis of gold nanoparticles using aqueous Aegle marmelos leaf extract and their application for thiamine detection vol.4, pp.54, 2006, https://doi.org/10.1039/c4ra03883e
  26. Comparative hyperthermia effects of silica–gold nanoshells with different surface coverage of gold clusters on epithelial tumor cells vol.10, pp.specal, 2006, https://doi.org/10.2147/ijn.s88309
  27. Broadening the photoresponsive activity of anatase titanium dioxide particles via decoration with partial gold shells vol.513, pp.None, 2018, https://doi.org/10.1016/j.jcis.2017.10.053
  28. Antibody-conjugated near-infrared luminescent silicon quantum dots for biosensing vol.9, pp.3, 2006, https://doi.org/10.1557/mrc.2019.98
  29. Insights into the mechanism of the formation of noble metal nanoparticles by in situ NMR spectroscopy vol.2, pp.9, 2020, https://doi.org/10.1039/d0na00159g
  30. Rational design of bimetallic photocatalysts based on plasmonically-derived hot carriers vol.3, pp.3, 2006, https://doi.org/10.1039/d0na00728e
  31. Visualization of gold nanoparticles formation in DC plasma-liquid systems vol.23, pp.7, 2006, https://doi.org/10.1088/2058-6272/ac0008
  32. Si@Au Core-Shell Nanostructures: Toward a New Platform for Controlling Optical Properties at the Nanoscale vol.125, pp.37, 2006, https://doi.org/10.1021/acs.jpcc.1c06182