DOI QR코드

DOI QR Code

Some of the Food Color Additives Are Potent Inhibitors of Human Protein Tyrosine Phosphatases

  • Shrestha, Suja (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Bhattarai, Bharat Raj (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Lee, Keun-Hyeung (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Cho, Hyeong-Jin (Department of Chemistry and Institute of Molecular Cell Biology, Inha University)
  • Published : 2006.10.20

Abstract

Synthetic color additives approved for general food use are sixteen in European Union, seven in U. S. A. and twelve in Japan. Twelve food dyes were examined for their inhibitory potency against human protein tyrosine phosphatases (PTPases). Half of the food colorants inhibited PTPases significantly and three of them were potent inhibitors with low micromolar IC50 values. Also examined were the synthetic dyes structurally similar but not allowed in food. Some of them were potent inhibitors of PTPases. Considering the importance of PTPases in cellular signal transduction, inhibition of PTPases by food colorants might cause harmful effects in human health.

Keywords

References

  1. Food and Drug Administration/International Food Information Council Brochure; U. S. Food and Drug Administration: January 1993
  2. Naitoh, J.; Fox, B. M. Urology 1994, 44, 271 https://doi.org/10.1016/S0090-4295(94)80149-5
  3. Jeffords, D. L.; Lange, P. H.; DeWolf, W. C. Urology 1977, 9, 180 https://doi.org/10.1016/0090-4295(77)90192-3
  4. Fairley, H. B. Anesthesiology 1993, 79, 1454 https://doi.org/10.1097/00000542-199312000-00059
  5. Borzelleca, J. F.; Goldenthal, E. I.; Wazeter, F. X.; Schardein, J. L. Food Chemical Toxicol. 1987, 25, 495 https://doi.org/10.1016/0278-6915(87)90199-2
  6. Baldwin, J. L.; Chou, A. H.; Solomon, W. R. Ann. Allergy Asthma Immunol. 1997, 79, 415 https://doi.org/10.1016/S1081-1206(10)63035-9
  7. Kuramoto, Y.; Yamada, K.; Lim, B. O.; Sugano, M. Biosci. Biotechnol. Biochem. 1997, 61, 723 https://doi.org/10.1271/bbb.61.723
  8. Yamada, J. J. Agric. Biol. Chem. 1991, 55, 1143 https://doi.org/10.1271/bbb1961.55.1143
  9. Ashida, H.; Hashimoto, T.; Tsuji, S.; Kanazawa, K.; Danno, G.-I. J. Nutr. Sci. Vitaminol (Tokyo) 2000, 46, 130 https://doi.org/10.3177/jnsv.46.130
  10. van Hooft, J. A. Neurosc. Lett. 2002, 318, 163 https://doi.org/10.1016/S0304-3940(01)02452-1
  11. Stefanidou, M.; Alevisopoulos, G.; Chatziioannou, A.; Koutselinis, A. Vet. Hum. Toxicol. 2003, 45, 103
  12. Tsuda, S.; Murakami, M.; Matsusaka, N.; Kano, K.; Taniguchi, K.; Sasaki, Y. F. Toxicol. Sci. 2001, 61, 92 https://doi.org/10.1093/toxsci/61.1.92
  13. Yamazaki, H.; Nakami, H.; Yamaguchi, T. Nippon Shokuhin Kagaku Gakkaishi 2002, 9, 89
  14. Worm, M.; Ehlers, I.; Sterry, W.; Zuberbier, T. Clin. Exp. Allergy 2000, 30, 407 https://doi.org/10.1046/j.1365-2222.2000.00722.x
  15. Shrestha, S.; Shim, Y. S.; Kim, K. C.; Lee, K.-H.; Cho, H. Bioorg. Med. Chem. Lett. 2004, 14, 1923 https://doi.org/10.1016/j.bmcl.2004.01.079
  16. Cho, H.; Lee, D. Y.; Shrestha, S.; Shim, Y. S.; Kim, K. C.; Kim, M.-K.; Lee, K.-H.; Won, J.; Kang, J.-S. Mol. Cells 2004, 18, 46
  17. Neel, B. G.; Tonks, N. K. Curr. Opin. Cell Biol. 1997, 9, 193 https://doi.org/10.1016/S0955-0674(97)80063-4
  18. ostman, A.; Böhmer, F. D. Trends in Cell Biol. 2001, 11, 258 https://doi.org/10.1016/S0962-8924(01)01990-0
  19. Shrestha, S.; Lee, K.-H.; Cho, H. Bull. Korean Chem. Soc. 2004, 25, 1303 https://doi.org/10.5012/bkcs.2004.25.9.1303
  20. Andersen, J. N.; Mortensen, O. H.; Peters, G. H.; Drake, P. G.; Iversen, L. F.; Olsen, O. H.; Jansen, P. G.; Andersen, H. S.; Tonks, N. K.; Moller, N. P. H. Mol. Cell. Biol. 2001, 21, 7117 https://doi.org/10.1128/MCB.21.21.7117-7136.2001
  21. Zhang, Z.-Y. Ann. Rev. Pharm. Toxicol. 2002, 42, 209 https://doi.org/10.1146/annurev.pharmtox.42.083001.144616
  22. Puis, Y. A.; Zhao, Y.; Sullivan, M.; Lawrence, D. S.; Almo, S. C.; Zhang, Z.-Y. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 13420 https://doi.org/10.1073/pnas.94.25.13420
  23. Hansen, W. H.; Long, E. L.; Davis, K. J.; Nelson, A. A.; Fitzhugh, O. G. Food Cosmet. Toxicol. 1966, 4, 389 https://doi.org/10.1016/S0015-6264(66)80581-3

Cited by

  1. Oxidative effects of Tartrazine (CAS No. 1934-21-0) and New Coccin (CAS No. 2611-82-7) azo dyes on CHO cells vol.7, pp.3, 2012, https://doi.org/10.1007/s00003-012-0782-z
  2. Xanthene Dyes Induce Membrane Permeabilization of Bacteria and Erythrocytes by Photoinactivation vol.88, pp.2, 2012, https://doi.org/10.1111/j.1751-1097.2012.01080.x
  3. Serendipitous discovery of light-induced (In Situ) formation of an Azo-bridged dimeric sulfonated naphthol as a potent PTP1B inhibitor vol.18, pp.1, 2017, https://doi.org/10.1186/s12858-017-0083-3
  4. Removal of Tartrazine from Aqueous Solution by Adsorption on Activated Red Mud vol.228, pp.8, 2017, https://doi.org/10.1007/s11270-017-3469-3
  5. Brilliant Blue Dyes in Daily Food: How Could Purinergic System Be Affected? vol.2016, pp.None, 2006, https://doi.org/10.1155/2016/7548498
  6. The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae vol.9, pp.4, 2019, https://doi.org/10.15421/021871
  7. Development of Three-Dimensional Nickel-Cobalt Oxide Nanoflowers for Superior Photocatalytic Degradation of Food Colorant Dyes: Catalyst Properties and Reaction Kinetic Study vol.37, pp.44, 2006, https://doi.org/10.1021/acs.langmuir.1c01999