Chemical Variability of Leaf Cuticular Waxes According to Leaf Position in Tea Tree

  • Kim, Kwan-Su (Department of Medicinal Plant Resources, Mokpo National University) ;
  • Song, Yeon-Sang (Mokpo Experiment Station, National Institute of Crop Science, RDA) ;
  • Moon, Youn-Ho (Mokpo Experiment Station, National Institute of Crop Science, RDA) ;
  • Park, Si-Hyung (Department of Medicinal Plant Resources, Mokpo National University)
  • Published : 2006.11.30

Abstract

Cuticular waxes on tea (Camellia sinensis L.) loaves consisted mainly of alkanes, fatty acids, primary alcohols, triterpenes, and a group of unknown compounds, dominated by primary alcohols and triterpenes. Tea tree accessions used in this study were M-1, M-2, Sakimidori, and Yabukita. For all accessions, the alkane, fatty acid, and primary alcohol constituents consisted of a homologues series, and the major constituents of primary alcohol class were the C28 and C30 homologues. Triterpenes consisted of friedelin, $\beta-amyrin$, and three unidentified ones and friedelin was the most abundant. Leaf area and the total amounts of cuticular waxes per leaf increased with lower leaf position from the apical bud in Yabukita variety. With different leaf position, total wax amount per unit leaf area on the youngest leaves of P1 (the uppermost leaf position) showed the largest amount $(12.80{\mu}g/cm^2)$, and on mature loaves of P2 to P6 ranged from 7.08 to $7.77{\mu}g/cm^2$, and then on the oldest loaves of P7 (the lowest leaf position) remained at an increased level $(17.53{\mu}g/cm^2)$. During leaf development (lower leaf position), the amount of primary alcohols decreased from P1 to P6 and increased at P7, whereas that of triterpenes increased from P1 to P7. The percentage of each wax class in the total wax amount occurred a decrease in primary alcohol and an increase in triterpene, with leaf age.

Keywords